论文推荐|[NAACL 2019] 基于图卷积网络的视觉富文本数据中文档图像信息抽取

简介: 简要介绍NAACL 2019录用论文“Graph Convolution for Multimodal Information Extraction from Visually Rich Documents”的主要工作。该论文主要针对视觉富文本数据的信息抽取问题,提出了一种图卷积网络,结合文本信息与视觉信息,取得了比纯文本方法更好的效果。

image.png

  本文简要介绍NAACL 2019录用论文“Graph Convolution for Multimodal Information Extraction from Visually Rich Documents”的主要工作。该论文主要针对视觉富文本数据的信息抽取问题,提出了一种图卷积网络,结合文本信息与视觉信息,取得了比纯文本方法更好的效果。

image.png


图1 视觉富文本数据示例

一、研究背景

  信息抽取是从非结构化文本中提取结构化信息的过程,其作为一个经典和基础的自然语言处理问题已经得到广泛研究。传统的信息抽取聚焦于从纯文本中提取实体与关系信息,却较少有对视觉富文本的研究。视觉富文本数据是指语义结构不仅由本文内容决定,也与排版、表格结构、字体等视觉元素有关的文本数据。视觉富文本数据在生活中随处可见,例如收据、证件、保险单等,本文主要关心的是该类图片经过OCR后带坐标文字行数据的信息抽取。基于模板匹配的方法1[3]虽然可以结合文本与视觉信息,但是以收据为例一种数据可能有上千种模板,并且以图片为输入的系统伴随着变形、模糊、干扰信息等问题,每个模板都需要大量工程调优,其可扩展性很差。

二、方法原理简述

image.png


图2 视觉富文本数据建模

  图2是本文对视觉富文本数据的建模方式。每张图片经过OCR系统后会得到一组文本块,每个文本块包含其在图片中的坐标信息与文本内容。本文将这一组文本块构成全连接有向图,即每个文本块构成一个节点,每个节点都与其他所有节点有连接。节点的初始特征由文本块的文本内容通过BiLSTM[4]编码得到。边的初始特征为邻居文本块与当前文本块的相对坐标与长宽信息,该特征使用当前文本块的高度进行归一化,具有仿射不变性。

image.png


图3 视觉富文本数据图卷积模型

  图3是本文对视觉富文本数据使用的图卷积模型。与其他图卷积工作(GAT[5]等)仅在节点上进行卷积不同,本文认为在信息抽取中“个体-关系-个体”的三元信息更加重要,所以在“节点-边-节点”的三元特征组上进行卷积。本文同时引入了Self-attention机制[6],让网络在全连接有向图构成的所有有向三元组中挑选更加值得注意的信息,并加权聚合特征。初始的节点特征与边特征经过多层卷积后得到节点与边的高层表征。

image.png


图4 图特征的BiLSTM-CRF解码

  图4是本文使用信息抽取解码器,解码阶段将之前得到的节点高层表征与节点文本每个单字的特征表征拼接,使用经典的BiLSTM+CRF结构,输出单字级别的抽取结果。实验中使用Word2Vec生成单字的特征表征,并对单字进行IOB打标[7]。实验中同时对每个文字块所属的实体标签进行打标,并将节点高层表征输入Sigmoid分类器对文字块的实体标签进行判定,作为一个辅助任务同时进行训练。

三、主要实验结果

  本文在两份真实商业数据上测试了方法的效果,分别为增值税发票(VATI,固定版式,3000张)和国际采购收据(IPR,非固定版式,1500张),其中OCR部分使用了阿里巴巴读光OCR团队的技术。本文使用了两个Baseline,Baseline I为对每个文本块的文本内容独立做BiLSTM+CRF解码,Baseline II为将所有文本块的文本内容进行“从左到右、从上到下”的顺序拼接后,对拼接文本整体做BiLSTM+CRF解码。

表1 整体F1score评价


image.png

表2 实体F1score评价


image.png

  从表1和表2可以看到,本文提出的模型在Basline的基础上都有明显提升,其中在仅依靠文本信息就可以抽取的字段(如日期)上与Baseline持平,而在需要依靠视觉信息做判断的字段(如价格、税额)上有较大提升。

表3 模型简化测试(F1score)


image.png

  表3为模型简化测试结果,进一步研究视觉信息(初始边特征)、文本信息(初始节点特征)与self-attention所扮演的作用。实验显示,视觉信息起主要作用,增加了语义相近文本的区分度。文本信息也对视觉信息起到一定的辅助作用。self-attention在固定版式数据上基本没有帮助,但是在非固定版式数据上有一定提升。

表4 辅助任务有效性验证(F1score)


image.png

  表4为辅助任务有效性验证实验结果,可以看到辅助任务由于引入了更多信息,所以取得了更佳的效果。实验同时发现,引入辅助任务有助于网络训练更快收敛。

四、总结及讨论

1. 本文提出了一种用于视觉富文本数据信息抽取的图卷积网络,在图卷积网络抽取的特征上做BiLSTM+CRF解码,对比在独立文本块和拼接文本上做BiLSTM+CRF解码有明显的效果提升。
2. 本文标注了两个真实场景视觉富文本数据集,并进行了综合实验与分析,直观展现了视觉信息、文本信息、Self-Attention和辅助任务的作用。
3. 本文展现了处理视觉富文本的新思路,未来会应用于更多视觉富文本理解任务。

五、相关资源

• Graph Convolution for Multimodal Information Extraction from Visually Rich Documents 论文地址:https://arxiv.org/pdf/1903.11279.pdf
• GAT论文地址:https://arxiv.org/pdf/1710.10903.pdf
• Self-Attention论文地址:https://arxiv.org/pdf/1706.03762.pdf

参考文献

[1] Laura Chiticariu, Yunyao Li, and Frederick R Reiss. 2013. Rule-based information extraction is dead! long live rule-based information extraction systems! In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 827–832.
[2] Andreas R Dengel and Bertin Klein. 2002. smartfix: A requirements-driven system for document analysis and understanding. In International Workshop on Document Analysis Systems,pages 433–444. Springer.
[3] Daniel Schuster, Klemens Muthmann, Daniel Esser, Alexander Schill, Michael Berger, Christoph Weidling, Kamil Aliyev, and Andreas Hofmeier. 2013. Intellix–end-user trained information extraction for document archiving. In 2013 12th International Conference on Document Analysis and Recognition,pages 101–105. IEEE.
[4] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks.IEEE Transactions on Signal Processing,45(11):2673.
[5] Petar Veliˇckovi´c, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li`o,and Yoshua Bengio. 2018. Graph attention networks. International Conference on Learning Representations.
[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ŁukaszKaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008.
[7] Erik F Sang and Jorn Veenstra. 1999. Representing text chunks. In Proceedings of the ninth conference on European chapter of the Association for Computational Linguistics, pages 173–179.Association for Computational Linguistics.

__
原文作者:Xiaojing Liu, Feiyu Gao,Qiong Zhang, Huasha Zhao

**本文出处:
https://mp.weixin.qq.com/s/CwLN2SRyN7RTEFtNx3u8Pg**

相关文章
|
7天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
2天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
12 3
|
7天前
|
存储 安全 网络安全
云计算与网络安全:保护数据的新策略
【10月更文挑战第28天】随着云计算的广泛应用,网络安全问题日益突出。本文将深入探讨云计算环境下的网络安全挑战,并提出有效的安全策略和措施。我们将分析云服务中的安全风险,探讨如何通过技术和管理措施来提升信息安全水平,包括加密技术、访问控制、安全审计等。此外,文章还将分享一些实用的代码示例,帮助读者更好地理解和应用这些安全策略。
|
11天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
15 2
|
11天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
17 1
|
12天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。
|
15天前
|
存储 安全 网络安全
云计算与网络安全:如何保护您的数据
【10月更文挑战第21天】在这篇文章中,我们将探讨云计算和网络安全的关系。随着云计算的普及,网络安全问题日益突出。我们将介绍云服务的基本概念,以及如何通过网络安全措施来保护您的数据。最后,我们将提供一些代码示例,帮助您更好地理解这些概念。
|
14天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
54 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
下一篇
无影云桌面