在量化交易中应用卷积神经网络CNN做时间序列预测

简介: 在量化交易中使用CNN做时间序列预测的理论,以及实现框架

量化交易中,最直接的判断策略是根据历史的价格走势或者交易量的变化,来预测未来的价格。这一点对于传统看K线的形态派,和现在使用机器学习的炼丹派应该都是一样的。对价格预测的有效性基于两个假设:

  1. 市场参与者的某种交易心理或者说情绪,会形成特定模式的下单流,从结果来看,就是造成特定的交易量演变以及价格走势。也就是说价格波动不是一个完全的随机游走过程,而是前后关联的。
  2. 市场参与者不会在某个时间点全部离场而进入全新的交易者,而是一个逐渐加入/退出的过程。这导致一个模式不会马上消失,而是逐渐演变。也就是说价格波动的形态是会重复发生的。

通过机器学习方法进行的量化预测,本质上就是先基于交易量和价格这两个市场行为的结果,找出潜在的交易心理/模式,当我们找到的模式在未来某个时间点再重现的时候,我们就可以从中获利。这个过程有点像自然语言处理,比如机器翻译要把中文翻译为英文,第一步是找出中文背后的语义,然后在把语义变为英文,这背后的语义就跟我们所说的交易模式一样,不可描述。

LSTM

时间序列预测,这个是一个典型的序列问题,直观的可以用循环神经网络(RNN, Recurrent Neural Networks)解决,RNN应用了序列的上下文关系。多数情况都会使用长短期记忆(LSTM,Long Short-Term Memory)网络,一种特殊的RNN。RNN在 语音识别、机器翻译这些场景应用很广泛。RNN的结构:

RNN_longtermdependencies

原始RNN的缺点是无法实现长期依赖(Long-Term Dependencies),也就是说随着时间序列的增长,序列的开头对于后面的作用几乎不存在了。LSTM是这针对这个问题进行优化的RNN变种,它可以保存几十个步骤以前的信息。LSTM的实现细节可以参考Understanding LSTM Networks -- colah's blog

但是在金融时间序列的问题上,时间序列的会很长,可能上千个神经元,LSTM无法解决这么久远的信息依赖。另外一个问题是RNN模型的训练过程的效率非常低,因为同一层的神经元计算是顺序进行的,这个顺序没法实现并行化。现在最新的研究也是正在放弃RNN/LSTM,比如 ResNet 和 Attention。

CNN

卷积神经网络(CNN,Convolutional Neural Networks)在计算机视觉中应用非常广泛,其最基本的理念就是对图像进行特征抽取。特征抽取是基于图像的两个性质:局部相关性和空间不变性。先说局部相关性,图像的本质是一个像素点组成的矩阵,单个像素与周围相邻的像素是有关联的,这种关联可能是他们共同组成图像中的一个结构,也叫特征。而空间不变性,就是指在对图像进行变换之后,一系列列相邻的像素点组成的特征依然存在。我们先看一下一个完整的CNN框架,这里是的目标是识别图片中的数字:

CNN_jpeg

CNN里面主要包含两个操作:卷积和池化。池化就是对图片数据进行采样,是一个相对简单的过程。卷积操作才是特征提取的核心。先要定义一个卷积核,不同的卷积核定义的是想要提取的目标特征特征,下面是卷积运算的计算过程:

Converlution

常用的卷积核定义以及特征提取的效果:

Conv

CNN的具体细节参考一下两篇博文,上文的图片也是来自于这两篇文章:

对于量化交易中假设时间序列数据中存在特定的模式,可以关联到上文的图片特征,理解为时间维度上的局部相关性,也就是说相邻的时间点组成了一个模式,我们可以通过CNN把潜在的模式提取出来。这个应用从直观上不是很好理解,因为从时间序列的角度来说,点与点之间是有先后的顺序关系的,也就一般所说的上下文,但是在CNN中,这个上下文信息被平面化了,认为所有的历史信息对于当前点的影响都是等价的。基于这一点,也有将CNN和LSTM结合在一起使用的工作:Twitter Sentiment Analysis using combined LSTM-CNN Models。当然从卷积运算的角度来看,卷积核探测到的模式其实是确定了其中的相对位置关系的,这也可以说是上下文信息的一种变形。

使用CNN相对于LSTM最大的优点是它可以运用并行化计算,计算效率远比LSTM高,从而我们可以把网络做的更深。

实现

我们先把问题进行转化,其实我们可以把我们的目标弱化,我们并不需要知道未来某一时刻价格精确的位置,而是只需要知道价格波动在未来是否达到了我们可以盈利的预期值,也就是价格是否涨/跌超过一个阈值,这样原始的问题我们形式化为一个分类问题。

下图是借用CNN处理文本处理的框架,并在图上做了修改,A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

CNN_TimeSeries

在这个框架中,卷积运算的维度从上文介绍的图片分类的2维空间信息转变为1维时间信息。而横向(d=5)的数据是同一类别的量化因子,作为描述同一时间点的原始特征值。比如基于价格计算出来的不同周期的MACD,也可以直接是价格的OHLC,只要保证不同列的因子数据是可比较的就行。多个不同的大小的核,表示想要探测不同时间长度的模式。不同类型的因子可以通过上述的框架中,最后一步softmax之前,把所有因子中提取出来的特征值拼接在一起,最后做分类。这个模型是借用文本分类的框架,为了方便说明在在1维数据中使用CNN的过程。

PyTorch中的一维卷积nn.Conv1d就可以完成时间序列上的卷积运算,参考pytorch之nn.Conv1d详解

class Conv1d(_ConvNd):
    """
    in_channels (int): 输入通道数,也就是上图中的d=5
    out_channels (int): 卷积产生的通道。有多少个out_channels,就需要多少个1维卷积
    kernel_size (int or tuple): 卷积核的大小,上图3组核的的大小分别为4、5、6
    stride (int or tuple, optional): 卷积步长,每一次卷积计算之间的跨度,默认1
    padding (int or tuple, optional): 输入的每一条边补充0的层数,默认0
    dilation (int or tuple, optional): 卷积核元素之间的间距
    groups (int, optional): 输入通道到输出通道的阻塞连接数
    bias (bool, optional): 是否添加偏置项
    """

用PyTorch定义一个处理时间序列的CNN网络:

import torch
import torch.nn as nn

class TimeSeriesCNN(nn.Module):
    def __init__(self):
        super(TimeSeriesCNN, self).__init__()
        kernel_sizes = [4, 5, 6]
        ts_len = 7 # length of time series
        hid_size = 1
        self.convs = nn.ModuleList([
            nn.Sequential(
                nn.Conv1d(
                    in_channels=5,
                    out_channels=2,
                    kernel_size=kernel_size,
                ),
                nn.ReLU(),
                nn.MaxPool1d(kernel_size=ts_len - kernel_size + 1))
            for kernel_size in kernel_sizes
        ])
        self.fc = nn.Linear(
            in_features=hid_size * len(kernel_sizes),
            out_features=3,
        )

    def forward(self, x):
        output = [conv(x) for conv in self.convs]
        output = torch.cat(output, dim=1)
        output = output.view(output.size(1), -1)
        output = self.fc(output)
        return output
目录
相关文章
|
6天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
41 6
|
5天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
5天前
|
数据采集 监控 数据可视化
Fortran 在单位网络监控软件数据处理中的应用
在数字化办公环境中,Fortran 语言凭借其高效性和强大的数值计算能力,在单位网络监控软件的数据处理中展现出独特优势。本文介绍了 Fortran 在数据采集、预处理和分析可视化三个阶段的应用,展示了其在保障网络安全稳定运行和有效管理方面的价值。
32 10
|
1天前
|
机器学习/深度学习 移动开发 自然语言处理
HTML5与神经网络技术的结合有哪些其他应用
HTML5与神经网络技术的结合有哪些其他应用
10 3
|
2天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
7天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
27 4
|
8天前
|
机器学习/深度学习 自然语言处理 监控
CNN的应用场景
【10月更文挑战第23天】CNN的应用场景
12 3
|
8天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
12 2
|
8天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
16 1
|
2天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。

热门文章

最新文章