PostgreSQL 10.0 preview 性能增强 - 间接索引(secondary index)

简介:

标签

PostgreSQL , 10.0 , 间接索引 , 第二索引


背景

我们知道,PostgreSQL的MVCC是多版本来实现的,当更新数据时,产生新的版本。

那么如果新版本不在同一个数据块的时候,索引也要随之变化,当新版本在同一个堆表的块里面时,则发生HOT UPDATE,不需要变更没有发生值改变的索引。

但是HOT总不能覆盖100%的更新,所以还是有索引更新的可能存在。

为了解决这个问题,PostgreSQL 10.0引入了第二索引(间接索引)的概念,即在PK或者UK之上,构建其他索引。

那么只要UK或者PK的值不变,其他索引都不需要变更。

间接索引的好处,不言而喻,可以减少表的DML带来的索引变更。

间接索引的缺陷,通过间接索引查询堆表数据时,需要扫描两个索引(间接索引,以及第一索引),还需要扫描堆表定位数据。

详情

I propose we introduce the concept of "indirect indexes".  I have a toy  
implementation and before I go further with it, I'd like this assembly's  
input on the general direction.  

Indirect indexes are similar to regular indexes, except that instead of  
carrying a heap TID as payload, they carry the value of the table's  
primary key.  Because this is laid out on top of existing index support  
code, values indexed by the PK can only be six bytes long (the length of  
ItemPointerData); in other words, 281,474,976,710,656 rows are  
supported, which should be sufficient for most use cases.[1]  

A new flag is added to the index AM routine, indicating whether it can  
support indirect indexes.  Initially, only the b-tree AM would support  
indirect indexes, but I plan to develop support for GIN indirect soon  
afterwards, which seems most valuable.  

To create an indirect index, the command  
    CREATE INDIRECT INDEX  
is used.  Currently this always uses the defined primary key index[2].  

Implementation-wise, to find a value using an indirect index that index  
is scanned first; this produces a PK value, which can be used to scan  
the primary key index, the result of which is returned.  

There are two big advantages to indirect indexes, both of which are  
related to UPDATE's "write amplification":  

1. UPDATE is faster.  Indirect indexes on column that are not modified  
   by the update do not need to be updated.  
2. HOT can be used more frequently.  Columns indexed only by indirect  
   indexes do not need to be considered for whether an update needs to  
   be non-HOT, so this further limits "write amplification".  

The biggest downside is that in order to find out a heap tuple using the  
index we need to descend two indexes (the indirect and the PK) instead  
of one, so it's slower.  For many use cases the tradeoff is justified.  

I measured the benefits with the current prototype implementation.  In  
two separate schemas, I created a pgbench_accounts table, with 12  
"filler" columns, and indexed them all; one schema used regular indexes,  
the other used indirect indexes.  Filled them both to the equivalent of  
scale 50, which results in a table of some 2171 MB; the 12 indexes are  
282 MB each, and the PK index is 107 MB).  I then ran a pgbench with a  
custom script that update a random one of those columns and leave the  
others alone on both schemas (not simultaneously).  I ran 100k updates  
for each case, 5 times:  

  method  │   TPS: min / avg (stddev) / max   │        Duration: min / avg / max        │ avg_wal   
──────────┼───────────────────────────────────┼─────────────────────────────────────────┼─────────  
 direct   │  601.2 / 1029.9 ( 371.9) / 1520.9 │ 00:01:05.76 / 00:01:48.58 / 00:02:46.39 │ 4841 MB  
 indirect │ 2165.1 / 3081.6 ( 574.8) / 3616.4 │ 00:00:27.66 / 00:00:33.56 / 00:00:46.2  │ 1194 MB  
(2 rows)  

This is a pretty small test (not long enough for autovacuum to trigger  
decently) but I think this should be compelling enough to present the  
case.  

Please discuss.  

Implementation notes:  

Executor-wise, we could have a distinct IndirectIndexScan node, or we  
could just hide the second index scan inside a regular IndexScan.  I  
think from a cleanliness POV there is no reason to have a separate node;  
efficiency wise I think a separate node leads to less branches in the  
code.  (In my toy patch I actually have the second indexscan hidden  
inside a separate "ibtree" AM; not what I really propose for commit.)  
Additionally, executor will have to keep track of the values in the PK  
index so that they can be passed down on insertion to each indirect  
index.  

Planner-wise, I don't think we need to introduce a distinct indirect  
index Path.  We can just let the cost estimator attach the true cost of  
the two scans to a regular index scan path, and the correct executor  
node is produced later if that index is chosen.  

In relcache we'll need an additional bitmapset of columns indexed by  
indirect indexes.  This is used so that heap_update can return an output  
bitmapset of such columns that were not modified (this is computed by  
HeapSatisfiesHOTandKeyUpdate).  The executor uses this to know when to  
skip updating each indirect index.  

Vacuuming presents an additional challenge: in order to remove index  
items from an indirect index, it's critical to scan the PK index first  
and collect the PK values that are being removed.  Then scan the  
indirect index and remove any items that match the PK items removed.  
This is a bit problematic because of the additional memory needed to   
store the array of PK values.  I haven't implemented this yet.  


Items I haven't thought about yet:  
* UNIQUE INDIRECT?  I think these should work, but require some  
  tinkering.  
* Deferred unique indexes?  See unique_key_recheck.  
* CREATE INDEX CONCURRENTLY.  


[1]  Eventually we can expand this to allow for "normal" datatypes, say  
bigint, but that's likely to require a much bigger patch in order to  
change IndexTuple to support it.  I would defer that project to a later  
time.  

[2] It is possible to extend the grammar to allow other UNIQUE indexes  
to be used, if they are on top of NOT NULL columns.  This would allow to  
extend existing production databases with a new column.  A proposed  
syntax is   
  CREATE INDIRECT INDEX idx ON tab (a, b, c)  
  REFERENCES some_unique_index  
  [optional WHERE clause] ;  
which Bison accepts.  I propose not to implement this yet.  However this  
is an important item because it allows existing databases to simply add  
an UNIQUE NOT NULL column to their existing big tables to take advantage  
of the feature, without requiring a lengthy dump/reload of tables that  
currently only have larger keys.  

--   
Álvaro Herrera                https://www.2ndQuadrant.com/  
PostgreSQL Development, 24x7 Support, Remote DBA, Training & Services  

这个patch的讨论,详见邮件组,本文末尾URL。

PostgreSQL社区的作风非常严谨,一个patch可能在邮件组中讨论几个月甚至几年,根据大家的意见反复的修正,patch合并到master已经非常成熟,所以PostgreSQL的稳定性也是远近闻名的。

参考

https://commitfest.postgresql.org/13/874/

https://www.postgresql.org/message-id/flat/20161018182843.xczrxsa2yd47pnru@alvherre.pgsql#20161018182843.xczrxsa2yd47pnru@alvherre.pgsql

《深入浅出PostgreSQL B-Tree索引结构》

《B-Tree和B+Tree》

《为PostgreSQL讨说法 - 浅析《UBER ENGINEERING SWITCHED FROM POSTGRES TO MYSQL》》

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
6月前
|
存储 监控 关系型数据库
B-tree不是万能药:PostgreSQL索引失效的7种高频场景与破解方案
在PostgreSQL优化实践中,B-tree索引虽承担了80%以上的查询加速任务,但因多种原因可能导致索引失效,引发性能骤降。本文深入剖析7种高频失效场景,包括隐式类型转换、函数包裹列、前导通配符等,并通过实战案例揭示问题本质,提供生产验证的解决方案。同时,总结索引使用决策矩阵与关键原则,助你让索引真正发挥作用。
433 0
|
6月前
|
SQL 关系型数据库 PostgreSQL
CTE vs 子查询:深入拆解PostgreSQL复杂SQL的隐藏性能差异
本文深入探讨了PostgreSQL中CTE(公共表表达式)与子查询的选择对SQL性能的影响。通过分析两者底层机制,揭示CTE的物化特性及子查询的优化融合优势,并结合多场景案例对比执行效率。最终给出决策指南,帮助开发者根据数据量、引用次数和复杂度选择最优方案,同时提供高级优化技巧和版本演进建议,助力SQL性能调优。
633 1
|
监控 关系型数据库 数据库
PostgreSQL的索引优化策略?
【8月更文挑战第26天】PostgreSQL的索引优化策略?
498 1
|
缓存 关系型数据库 数据库
PostgreSQL性能
【8月更文挑战第26天】PostgreSQL性能
268 1
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
337 2
|
11月前
|
JSON 关系型数据库 PostgreSQL
PostgreSQL 9种索引的原理和应用场景
PostgreSQL 支持九种主要索引类型,包括 B-Tree、Hash、GiST、SP-GiST、GIN、BRIN、Bitmap、Partial 和 Unique 索引。每种索引适用于不同场景,如 B-Tree 适合范围查询和排序,Hash 仅用于等值查询,GiST 支持全文搜索和几何数据查询,GIN 适用于多值列和 JSON 数据,BRIN 适合非常大的表,Bitmap 适用于低基数列,Partial 只对部分数据创建索引,Unique 确保列值唯一。
|
缓存 关系型数据库 数据库
如何优化 PostgreSQL 数据库性能?
如何优化 PostgreSQL 数据库性能?
686 2
|
缓存 关系型数据库 数据库
PostgreSQL的性能
PostgreSQL的性能
616 2
|
缓存 关系型数据库 数据库
PostgreSQL 查询性能
【8月更文挑战第5天】PostgreSQL 查询性能
314 8
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多