PostgreSQL 10.0 preview 性能增强 - 2PC事务恢复阶段性能提升

简介:

标签

PostgreSQL , 10.0 , 2pc , recovery


背景

两阶段提交,在一些客户端异步事务,或者跨库的事务处理中非常常见。

目前,如果数据库crash,PostgreSQL恢复时,对2PC处理机制如下

* on prepare 2pc data (subxacts, commitrels, abortrels, invalmsgs) saved to xlog and to file, but file not is not fsynced  
* on commit backend reads data from file  
* if checkpoint occurs before commit, then files are fsynced during checkpoint  
* if case of crash replay will move data from xlog to files  

10.0将改进为

* on prepare backend writes data only to xlog and store pointer to the start of the xlog record  
* if commit occurs before checkpoint then backend reads data from xlog by this pointer  
* on checkpoint 2pc data copied to files and fsynced  
* if commit happens after checkpoint then backend reads files  
* in case of crash replay will move data from xlog to files (as it was before patch)  

详见

Hello.  

While working with cluster stuff (DTM, tsDTM) we noted that postgres 2pc transactions is approximately two times slower than an ordinary commit on workload with fast transactions — few single-row updates and COMMIT or PREPARE/COMMIT. Perf top showed that a lot of time is spent in kernel on fopen/fclose, so it worth a try to reduce file operations with 2pc tx.  

Now 2PC in postgres does following:  
* on prepare 2pc data (subxacts, commitrels, abortrels, invalmsgs) saved to xlog and to file, but file not is not fsynced  
* on commit backend reads data from file  
* if checkpoint occurs before commit, then files are fsynced during checkpoint  
* if case of crash replay will move data from xlog to files  

In this patch I’ve changed this procedures to following:  
* on prepare backend writes data only to xlog and store pointer to the start of the xlog record  
* if commit occurs before checkpoint then backend reads data from xlog by this pointer  
* on checkpoint 2pc data copied to files and fsynced  
* if commit happens after checkpoint then backend reads files  
* in case of crash replay will move data from xlog to files (as it was before patch)  

Most of that ideas was already mentioned in 2009 thread by Michael Paquier http://www.postgresql.org/message-id/c64c5f8b0908062031k3ff48428j824a9a46f28180ac@mail.gmail.com where he suggested to store 2pc data in shared memory.   
At that time patch was declined because no significant speedup were observed. Now I see performance improvements by my patch at about 60%. Probably old benchmark overall tps was lower and it was harder to hit filesystem fopen/fclose limits.  

Now results of benchmark are following (dual 6-core xeon server):  

Current master without 2PC: ~42 ktps  
Current master with 2PC: ~22 ktps  
Current master with 2PC: ~36 ktps  

Benchmark done with following script:  

\set naccounts 100000 * :scale  
\setrandom from_aid 1 :naccounts  
\setrandom to_aid 1 :naccounts  
\setrandom delta 1 100  
\set scale :scale+1  
BEGIN;  
UPDATE pgbench_accounts SET abalance = abalance - :delta WHERE aid = :from_aid;  
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :to_aid;  
PREPARE TRANSACTION ':client_id.:scale';  
COMMIT PREPARED ':client_id.:scale';  

这个patch的讨论,详见邮件组,本文末尾URL。

PostgreSQL社区的作风非常严谨,一个patch可能在邮件组中讨论几个月甚至几年,根据大家的意见反复的修正,patch合并到master已经非常成熟,所以PostgreSQL的稳定性也是远近闻名的。

参考

https://commitfest.postgresql.org/13/915/

https://www.postgresql.org/message-id/flat/74355FCF-AADC-4E51-850B-47AF59E0B215@postgrespro.ru#74355FCF-AADC-4E51-850B-47AF59E0B215@postgrespro.ru

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
6月前
|
SQL 关系型数据库 PostgreSQL
CTE vs 子查询:深入拆解PostgreSQL复杂SQL的隐藏性能差异
本文深入探讨了PostgreSQL中CTE(公共表表达式)与子查询的选择对SQL性能的影响。通过分析两者底层机制,揭示CTE的物化特性及子查询的优化融合优势,并结合多场景案例对比执行效率。最终给出决策指南,帮助开发者根据数据量、引用次数和复杂度选择最优方案,同时提供高级优化技巧和版本演进建议,助力SQL性能调优。
633 1
|
缓存 关系型数据库 数据库
PostgreSQL性能
【8月更文挑战第26天】PostgreSQL性能
268 1
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
337 2
|
缓存 关系型数据库 数据库
如何优化 PostgreSQL 数据库性能?
如何优化 PostgreSQL 数据库性能?
686 2
|
缓存 关系型数据库 数据库
PostgreSQL的性能
PostgreSQL的性能
616 2
|
缓存 关系型数据库 数据库
PostgreSQL 查询性能
【8月更文挑战第5天】PostgreSQL 查询性能
314 8
|
关系型数据库 Java 数据库
PostgreSQL性能
【8月更文挑战第5天】PostgreSQL性能
419 7
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
监控 关系型数据库 数据库
如何优化PostgreSQL的性能?
【8月更文挑战第4天】如何优化PostgreSQL的性能?
782 7
|
存储 SQL Oracle
02-PostgreSQL 存储过程的进阶介绍(含游标、错误处理、自定义函数、事务)
02-PostgreSQL 存储过程的进阶介绍(含游标、错误处理、自定义函数、事务)

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多