深入理解JVM之垃圾收集器与内存分配策略
java中对象的创建需要的内存都是在java堆中申请的,所以垃圾收集的区域就是对java堆和方法区的内存区域进行GC。
如何判断对象已经消亡
垃圾收集器的主要任务就是找出已经“消亡”的对象,将其标记并清除其说用内存的过程,如何判断某个对象已经“消亡”,不同的虚拟机有不同的判断策略
引用计数算法
引用计数(Reference Counting)算法的基本思想就是:给每个对象添加一个引用计数器,每当有一个地方对该对象进行了引用,引用计数器就加1;引用失效后就减1;当引用计数器为0时,就表示没有任何地方引用了该对象,这可以认为该对象已经“消亡”了。
虽然引用计数算法思想简单,效率也很高,但是java虚拟机并没有用到该算法标记“消亡”对象,因为当出现循环引用的时候,表现就不是那么好了。我们可以编写测试代码测试并看GC信息看看java虚拟机到底有没有用该算法。
/**
* @ClassName: ReferenceCountingGC
* @Description: 引用计算GC
* @author 祝佳俊(jjzhu_ncu@163.com)
* @date 2016年10月20日 下午4:57:53
*
*/
public class ReferenceCountingGC {
public Object instance = null;
private static final int _1MB = 1024 * 1024;
private byte[] bigSize = new byte[2 * _1MB];
public static void testGC(){
ReferenceCountingGC objA = new ReferenceCountingGC();
ReferenceCountingGC objB = new ReferenceCountingGC();
objA.instance = objB; //互相引用
objB.instance = objA;
objA = null;
objB = null;
System.gc();
}
public static void main(String[] args) {
testGC();
}
}
代码示例中,新建了两个对象objA,objB,然后通过objA.instance = objB,objB.instance = objA让他们互相引用,然后将objA、objB都置为空,将会触发GC,我们可以通过-XX:+PrintGCDetails让java虚拟机在发生GC后打印出GC的具体信息,
代码片运行时的VM参数为-Xmx20M -Xms20M -XX:+PrintGCDetails
运行程序,可看到如下打印结果:
[GC [PSYoungGen: 4340K->256K(5952K)] 4340K->256K(19648K), 0.0009373 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
[Full GC (System) [PSYoungGen: 256K->0K(5952K)] [PSOldGen: 0K->162K(13696K)] 256K->162K(19648K) [PSPermGen: 3025K->3025K(21248K)], 0.0053905 secs] [Times: user=0.02 sys=0.00, real=0.01 secs]
Heap
PSYoungGen total 5952K, used 205K [0x00000000ff960000, 0x0000000100000000, 0x0000000100000000)
eden space 5120K, 4% used [0x00000000ff960000,0x00000000ff993408,0x00000000ffe60000)
from space 832K, 0% used [0x00000000ffe60000,0x00000000ffe60000,0x00000000fff30000)
to space 832K, 0% used [0x00000000fff30000,0x00000000fff30000,0x0000000100000000)
PSOldGen total 13696K, used 162K [0x00000000fec00000, 0x00000000ff960000, 0x00000000ff960000)
object space 13696K, 1% used [0x00000000fec00000,0x00000000fec28910,0x00000000ff960000)
PSPermGen total 21248K, used 3043K [0x00000000f9a00000, 0x00000000faec0000, 0x00000000fec00000)
object space 21248K, 14% used [0x00000000f9a00000,0x00000000f9cf8c28,0x00000000faec0000)
在分析结果前,先对GC的内容先做一个介绍:
1、GC日志的第一行[GC [PSYoungGen说明了在新生代发生了GC(Minor GC),这里也可以看出,当前的HotSpot虚拟机采用的是Parallel Scavenge(PS)垃圾收集器 后面的4340K->256K代表GC前后的新生代内存区域的变化,这里从4340K变到256K,说明虚拟机进行了垃圾回收,后面的(5952K)代表新生代的内存区域大小,4340K->256K(19648K)这里的括号内的19648K代表新生代和年老代的内存大小。之后的0.0009373 secs代表的是GC所用的事件。
2、GC日志的第二行[Full GC (System)表示系统触发的一次Full GC,也就是代码中System.gc();所引起的GC,一次Full GC会对java堆中的所有区域进行GC(新生代、年老代、永久代),所以后面的PSYoungGen(新生代)、PSOldGen(年老代)、PSPermGen(永久带)显示了各区域的GC情况,我们可以看到PSYoungGen: 256K->0K(5952K),新生代经过Full GC后,全被清空了。
3、后面的Heap堆显示了各区域的最终使用情况
从最后的Full GC (System) [PSYoungGen: 256K->0K(5952K)]可以看到,新生代中的内存全被GC了,所以说,HotSpot并没有用引用计数算法来对“消亡”对象进行GC。
根搜索算法
现在一般的垃圾收集器都是用该算法(GC Root Tracing)来判断对象是否“消亡”,该算法的基本思想就是:通过一组称为“GC Roots”的对象作为根节点,然后从这些根节点向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到根节点之间没有任何一条引用链的话,就认为该对象已经“消亡”,如下图所示:
可以作为GC Roots的对象包括:
1. 虚拟机栈(栈帧中的本地变量表)中的引用的对象
2. 方法区中 的类静态属性引用的对象
3. 方法区中的常量引用的对象
4. Native方法引用的对象
引用
任何判断对象是否消亡都是通过引用来判断,引用以前的定义是:如果reference类型的数据中存储的数值代表的是另一块内存区域的起始地址的话,就称这块内存代表一个引用