【从入门到放弃-ZooKeeper】ZooKeeper实战-分布式队列

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 前言上文【从入门到放弃-ZooKeeper】ZooKeeper入门中,我们学习了ZooKeeper的简单安装和cli使用。接下来我们开始基于java API的实战编程。本文先来写一个分布式队列的代码实现。

前言

上文【从入门到放弃-ZooKeeper】ZooKeeper入门中,我们学习了ZooKeeper的简单安装和cli使用。
接下来我们开始基于java API的实战编程。本文先来写一个分布式队列的代码实现。

设计

我们来写一个先进先出的分布式无界公平队列。参考我们之前介绍的【从入门到放弃-Java】并发编程-JUC-ConcurrentLinkedQueue【从入门到放弃-Java】并发编程-JUC-LinkedBlockingQueue。我们直接继承AbstractQueue类,并实现Queue接口。
主要重写offer、poll、peek、size方法。
我们使用ZooKeeper的持久化顺序节点来实现分布式队列。
offer是入队,入队时新创建一个持久化顺序节点,节点后缀会根据ZooKeeper的特性自动累加。
poll的出队,获取根节点下的所有节点,根据后缀数字排序,数组最小的是最先入队的,因此要最先出队。
peek,获取到最下入队的数据,和poll的区别是,peek只获取数据,不出队,不删除已经消费的节点。
size获取队列长度,实现方式是,获取根节点下的节点数量即可。这个方法在并发时可能会有问题。慎用。

DistributedQueue

//继承AbstractQueue类并实现Queue接口
public class DistributedQueue<E> extends AbstractQueue<E> implements Queue<E> {
    private static Logger logger = LoggerFactory.getLogger(DistributedQueue.class);
    
    //ZooKeeper客户端,进行ZooKeeper操作
    private ZooKeeper zooKeeper;

    //根节点名称
    private String dir;

    //数据节点名称,顺序节点在插入口会变为 node{00000000xx} 格式
    private String node;

    //ZooKeeper鉴权信息
    private List<ACL> acls;

    /**
     * Constructor.
     *
     * @param zooKeeper the zoo keeper
     * @param dir       the dir
     * @param node      the node
     * @param acls      the acls
     */
   public DistributedQueue (ZooKeeper zooKeeper, String dir, String node, List<ACL> acls) {
        this.zooKeeper = zooKeeper;
        this.dir = dir;
        this.node = node;
        this.acls = acls;
        init();
    }


    private void init() {
        //需要先判断根节点是否存在,不存在的话,创建子节点时会出错。
        try {
            Stat stat = zooKeeper.exists(dir, false);
            if (stat == null) {
                zooKeeper.create(dir, null, acls, CreateMode.PERSISTENT);
            }
        } catch (Exception e) {
            logger.error("[DistributedQueue#init] error : " + e.toString(), e);
        }
    }
}

offer

/**
 * Offer boolean.
 *
 * @param o the o
 * @return the boolean
 */
@Override
public boolean offer(E o) {
    //构建要插入的节点名称
    String fullPath = dir.concat("/").concat(node);
    try {
        //创建子节点成功则返回入队成功
      zooKeeper.create(fullPath, objectToBytes(o), acls, CreateMode.PERSISTENT_SEQUENTIAL);
        return true;
    } catch (Exception e) {
        logger.error("[DistributedQueue#offer] error : " + e.toString(), e);
    }
    return false;
}

poll

/**
 * Poll e.
 *
 * @return the e
 */
@Override
public E poll() {
    try {
        //获取根节点所有子节点信息。
        List<String> children = zooKeeper.getChildren(dir, null);
        //如果队列是空的则返回null
        if (children == null || children.isEmpty()) {
            return null;
        }

        //将子节点名称排序
        Collections.sort(children);
        for (String child : children) {
            //拼接子节点的具体名称
            String fullPath = dir.concat("/").concat(child);
            try {
                //如果获取数据成功,则类型转换后,返回,并删除改队列中该节点
                byte[] bytes = zooKeeper.getData(fullPath, false, null);
                E data = (E) bytesToObject(bytes);
                zooKeeper.delete(fullPath, -1);
                return data;
            } catch (Exception e) {
                logger.warn("[DistributedQueue#poll] warn : " + e.toString(), e);
            }
        }

    } catch (Exception e) {
        logger.error("[DistributedQueue#peek] poll : " + e.toString(), e);
    }

    return null;
}

peek

/**
 * Peek e.
 *
 * @return the e
 */
@Override
public E peek() {
   
    try {
        //获取根节点所有子节点信息。
        List<String> children = zooKeeper.getChildren(dir, null);
        //如果队列是空的则返回null
        if (children == null || children.isEmpty()) {
            return null;
        }

        //将子节点名称排序
        Collections.sort(children);
        
        for (String child : children) {
            //拼接子节点的具体名称
            String fullPath = dir.concat("/").concat(child);
            try {
                //如果获取数据成功,则类型转换后,返回,不会删除改队列中该节点
                byte[] bytes = zooKeeper.getData(fullPath, false, null);
                E data = (E) bytesToObject(bytes);
                return data;
            } catch (Exception e) {
                logger.warn("[DistributedQueue#peek] warn : " + e.toString(), e);
            }
        }

    } catch (Exception e) {
        logger.error("[DistributedQueue#peek] warn : " + e.toString(), e);
    }

    return null;
}

size

/**
 * Size int.
 *
 * @return the int
 */
@Override
public int size() {
    try {
        //获取根节点的子节点名称
        List<String> children = zooKeeper.getChildren(dir, null);
        //返回子结点信息数量
        return children.size();
    } catch (Exception e) {
        logger.error("[DistributedQueue#offer] size : " + e.toString(), e);
    }

    return 0;
}

总结

上面我们一起学习了如何利用持久性顺序节点,创建一个分布式先进先出队列。源代码可见:aloofJr
如果有好的优化建议,欢迎一起讨论。

更多文章

见我的博客:https://nc2era.com

written by AloofJr,转载请注明出处

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
29天前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
2月前
|
存储 运维 NoSQL
分布式读写锁的奥义:上古世代 ZooKeeper 的进击
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
|
3月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
72 2
|
3月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
72 1
|
3月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
5月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
153 2
基于Redis的高可用分布式锁——RedLock
|
1月前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
164 5
|
2月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
89 8
|
2月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
70 16
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
57 5

热门文章

最新文章