分布式Id - redis方式

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 本篇分享内容是关于生成分布式Id的其中之一方案,除了redis方案之外还有如:数据库,雪花算法,mogodb(object_id也是数据库)等方案,对于redis来说是我们常用并接触比较多的,因此主要谈谈结合redis生成分布式id方案。

本篇分享内容是关于生成分布式Id的其中之一方案,除了redis方案之外还有如:数据库,雪花算法,mogodb(object_id也是数据库)等方案,对于redis来说是我们常用并接触比较多的,因此主要谈谈结合redis生成分布式id方案。

  • 分布式Id设计流程图
  • 基于redis的hash自动increment累加生成有序Id
  • 定期删除无用hash列

分布式Id设计流程图(有点粗略)

image

基于redis的hash自动increment累加生成有序Id

使用redis方案生成id,其中之一的方式主要使用increment(递增),不管是string、hash等都具有该方法,为了更方便管理我们id生成key这里建议使用hash的列的方式,以下内容都基于springboot分享;

当然,第一步我们需要创建一个hash和hkey才行,至于在业务第一次被访问来创建这个hash还是通过服务自动创建这个看业务和流量,这里的hkey是有一定规则的(当然不用局限性),这里我按照日期格式来做key,可以有如下代码:

    /**
     * 生成每天的初始Id
     * @param hashName
     * @return
     */
    public String initPrimaryId(String hashName) {
        Assert.hasLength(hashName, "hashName不能为空");

        String hashCol = LocalDate.now().format(DateTimeFormatter.ofPattern("yyyyMMdd"));
        //自定义编号规则
        String hashColVal = hashCol + "00001";
        redisTemplate.opsForHash().putIfAbsent(hashName, hashCol, hashColVal);
        return hashCol;
    }

上面很容易理解,hash中key是有每天日期格式组成,意思每天都需要生成一个新的日期key,通过putIfAbsent达到不重复添加的原则,至于hval可以根据自定义编号规则来生成一串数字字符(注:一定要数字)

有了上面的基础,我们仅仅需要increment来累加,redis即帮我们完整hval+1的操作,当然可以自定义累加数,如下代码:

    /**
     * 获取分布式Id
     *
     * @param hashName
     * @return
     */
    public long getPrimaryId(String hashName) {
        try {
            String hashCol = initPrimaryId(hashName);
            return redisTemplate.opsForHash().increment(hashName, hashCol, 1);
        } catch (Exception ex) {
            ex.printStackTrace();
        }
        return 0;
    }

定期删除无用hash列

就上面我们通过hash来设置每天id只增初始值,hash的hkey布局用自动过期功能,因此我们需要代码中维护一套清除来hkey的机制,既然id是根据日期生成,我们可以就用往前推n天的方式达到清除老hkey目的:

    /**
     * 删除多少天之前的cols
     * @param hashName
     * @param lessDay
     * @return
     */
    public Long removePrimaryByLessDay(String hashName, int lessDay) {
        try {
            //当前日期
            String hashCol = LocalDate.now().format(DateTimeFormatter.ofPattern("yyyyMMdd"));
            long idl = Long.valueOf(hashCol) - lessDay;

            String[] removeCols = redisTemplate.opsForHash().entries(hashName).keySet().stream().
                    map(key -> key.toString()).
                    filter(key -> idl > Long.valueOf(key)).  //从+1开始,避免删除当天数据
                    toArray(String[]::new);

            if (ArrayUtils.isNotEmpty(removeCols)) {
                return redisTemplate.opsForHash().delete(hashName, removeCols);
            }
        } catch (Exception ex) {
            ex.printStackTrace();
        }
        return 0L;
    }

按照日期来生成分布式id,达到id不重复的目的,这也就是分布式id(不重复),看起来简单其实如果在高流量冲击下,需要考虑的东西要很多,比如:什么时候生成初始Id、在多个服务器保证服务器时间尽可能一样情况下,该保留多少日期hkey等;

就上面代码对初始Id就做的不是很好,在业务获取Id时候,会去检测并创建id,这样与redis交互就多了一次,通常可以用服务来一次性生成当前日期往后推n天的hkey,这样就避免了在业务获取id时候,还要去putIfAbsent一次验证,减少了请求次数。实在不行可以使用lua脚本放在一次请求去做put和increment,你可能会用到:

            RedisScript script = new DefaultRedisScript("");
            redisTemplate.execute(script, Arrays.asList(""));
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
24天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
11天前
|
NoSQL 算法 关系型数据库
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
本文详解分布式全局唯一ID及其5种实现方案,关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
|
1月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
55 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
25天前
|
NoSQL Redis 数据库
计数器 分布式锁 redis实现
【10月更文挑战第5天】
44 1
|
29天前
|
NoSQL 算法 关系型数据库
Redis分布式锁
【10月更文挑战第1天】分布式锁用于在多进程环境中保护共享资源,防止并发冲突。通常借助外部系统如Redis或Zookeeper实现。通过`SETNX`命令加锁,并设置过期时间防止死锁。为避免误删他人锁,加锁时附带唯一标识,解锁前验证。面对锁提前过期的问题,可使用守护线程自动续期。在Redis集群中,需考虑主从同步延迟导致的锁丢失问题,Redlock算法可提高锁的可靠性。
69 4
|
29天前
|
缓存 NoSQL 算法
面试题:Redis如何实现分布式锁!
面试题:Redis如何实现分布式锁!
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
103 2
基于Redis的高可用分布式锁——RedLock
|
3月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
1月前
|
存储 缓存 NoSQL
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
54 4
|
1月前
|
缓存 NoSQL Ubuntu
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
53 3

热门文章

最新文章

下一篇
无影云桌面