MySQL字段类型转换引发的索引失效

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 概述 最近发现一个有趣的SQL优化场景,分享一下 测试数据 表结构 CREATE TABLE `news_webpage` ( `id` int(11) NOT NULL AUTO_INCREMENT, `t1` varchar(100) DEFAULT NULL, `t2` text.

概述

最近发现一个有趣的SQL优化场景,分享一下

测试数据

表结构

CREATE TABLE `dateindex_test` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `t1` varchar(100) DEFAULT NULL,
  `t2` text,
  `t2_sub` text,
  `t3` varchar(50) DEFAULT NULL,
  `url` varchar(100) DEFAULT NULL,
  `t4` varchar(255) DEFAULT NULL,
  `t5` longblob,
  `website_name` varchar(50) DEFAULT NULL,
  `t6` varchar(50) DEFAULT NULL,
  `t7` varchar(50) DEFAULT NULL,
  `publish_time` datetime DEFAULT NULL,
  `webpage_uuid` varchar(50) DEFAULT NULL,
  `create_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`) USING BTREE,
  UNIQUE KEY `webpage_uuid` (`webpage_uuid`) USING BTREE,
  KEY `website_name` (`website_name`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=8317875 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC

利用阿里云RDS中的DMS生成随机数据10万行如下

mysql>SELECT count(*) FROM dateindex_test;
+--------------------+
| count(*) |
+--------------------+
| 100000 |
+--------------------+
返回行数:[1],耗时:18 ms.

索引问题

问题SQL:

SELECT
 a.t1 AS t1,
 a.t2 AS t2,
 a.url AS url,
 a.t3 AS t3,
 a.publish_time AS publish_time 
FROM
 dateindex_test a 
WHERE
 date( a.publish_time ) >= date_sub(
  curdate(),
 INTERVAL 1 DAY )

没有索引之前,当然是全表扫。现在加上一个索引

ALTER TABLE dateindex_test ADD INDEX idx_publish_time(publish_time)

我的期望当然是直接走索引过滤是最好的,但是测试下却发现不行,虽然有索引了,但是没有走

mysql>explain SELECT
 a.t1 AS t1,
 a.t2 AS t2,
 a.url AS url,
 a.t3 AS t3,
 a.publish_time AS publish_time 
FROM
 dateindex_test a 
WHERE
 date( a.publish_time ) >= date_sub(
  curdate(),
 INTERVAL 1 DAY )
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+
| 1 | SIMPLE | a | | ALL | | | | | 99572 | 100 | Using where |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+

我第一时间怀疑的就是date() 函数导致的,将具体时间转换为日期,然后再试图使用具体时间的索引。看上去就感觉是有问题的。

所以就马上去掉 date函数再做测试,发现就使用了索引

mysql>explain SELECT
 a.t1 AS t1,
 a.t2 AS t2,
 a.url AS url,
 a.t3 AS t3,
 a.publish_time AS publish_time 
FROM
 dateindex_test a 
WHERE
 a.publish_time >= date_sub(
  curdate(),
 INTERVAL 1 DAY )
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+------------------+-------------------+---------------+----------------+--------------------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+------------------+-------------------+---------------+----------------+--------------------+-----------------------+
| 1 | SIMPLE | a | | range | idx_publish_time | idx_publish_time | 6 | | 17 | 100 | Using index condition |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+------------------+-------------------+---------------+----------------+--------------------+-----------------------+

到了这里,我所关心的就是:去掉date()函数以后,SQL语句的逻辑和原来的还是一样的吗。

我就再来测试一下:原SQL取出的是,昨天一整天+今天到目前为止的数据

我如果是使用原来的包含具体时间的数据来比较,能有一样的过滤效果吗?

就利用刚建的表小测试一下

第一次测试,发现数据并不一样

mysql>select count(*) from dateindex_test where date(publish_time) > '2019-08-15'
+--------------------+
| count(*) |
+--------------------+
| 64 |
+--------------------+
返回行数:[1],耗时:34 ms.
mysql>select count(*) from dateindex_test where publish_time > '2019-08-15'
+--------------------+
| count(*) |
+--------------------+
| 79 |
+--------------------+

再比较下原SQL,才发现上面不一样的原因所在,当 publish_time 为 2019-08-15 12:31:12,经过date()函数处理后的时间为:2019-08-15。此时与上述SQL的代入发现,第一条语句是不符合的,第二条,却是符合的(这里我猜测是因为在比较时发生隐性类型转换,将2019-08-15 转换为2019-08-19 00:00:00)

此时只要将原SQL中的> 改为'>='就能符合原SQL逻辑

如下:

mysql>select count(*) from dateindex_test where publish_time >= '2019-08-15'
+--------------------+
| count(*) |
+--------------------+
| 79 |
+--------------------+
mysql>select count(*) from dateindex_test where date(publish_time) >= '2019-08-15'
+--------------------+
| count(*) |
+--------------------+
| 79 |
+--------------------+


mysql>select count(*) from dateindex_test where date(publish_time) >= '2019-08-10'
+--------------------+
| count(*) |
+--------------------+
| 154 |
+--------------------+
mysql>select count(*) from dateindex_test where publish_time >= '2019-08-10'
+--------------------+
| count(*) |
+--------------------+
| 154 |
+--------------------+

date与datetime

由上引深再学习一下datetime与date字段类型的区别
1、显示格式的区别
Date显示格式:YYYY-MM-DD;DateTime显示格式:YYYY-MM-DD HH:mm:ss。

2、显示范围的区别
Date显示范围是1601-01-01 到 9999-01-01;DateTime显示范围是1601-01-01 00:00:00 到 9999-12-31 23:59:59。

3、应用场景的区别
当业务需求中只需要精确到天时,可以用Date这个时间格式,当业务需求中需要精确到秒时,可以用DateTime这个时间格式。

4、后台取值的区别
Date后台取值:@JSONField(format=”yyyy-MM-dd”);DateTime后台取值:@JSONField(format=”yyyy-MM-dd HH:mm:ss:SSS”)(这里只会精确到秒)。

字段类型转换导致的索引失效

其实这里最让我想要深入研究一下的主因就是为什么date函数会使该字段的索引无效

  • 函数使索引失效
    在上面的例子中,我们发现这就是引起索引失效的主要原因了,字段类型发生了转换
  • 字符串不加单引号(隐式类型转换;生产重罪)导致索引失效
    (下面测试,在表的t1列添加了索引)
mysql>explain select * from dateindex_test where t1 = 8
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+
| 1 | SIMPLE | dateindex_test | | ALL | idx_title | | | | 99572 | 10 | Using where |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+

mysql>explain select * from dateindex_test where t1 = '8'
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+
| 1 | SIMPLE | dateindex_test | | ref | idx_title | idx_title | 303 | const | 123 | 100 | |
+--------------+-----------------------+-----------------+----------------------+----------------+-------------------------+---------------+-------------------+---------------+----------------+--------------------+-----------------+

总结

不要在索引列上做任何操作(计算、函数、(自动或手动)类型转换),会导致索引失效进而转向全表扫描!

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
27天前
|
存储 关系型数据库 MySQL
MySQL 字段类型探究:深入理解 Varchar(50) 与 Varchar(500)
在MySQL数据库中,`VARCHAR`类型是一种常用的字符串存储类型,它允许定义一个可变长度的字符串。然而,`VARCHAR(50)`和`VARCHAR(500)`之间的差异不仅仅是长度的不同,它们在存储和性能方面也有显著的区别。本文将深入探讨这两种字段类型的区别,以及它们在实际应用中的选择。
80 3
|
22天前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
|
2月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
27天前
|
存储 关系型数据库 MySQL
MySQL 字段类型深度解析:VARCHAR(50) 与 VARCHAR(500) 的差异
在MySQL数据库中,`VARCHAR`类型是一种非常灵活的字符串存储类型,它允许存储可变长度的字符串。然而,`VARCHAR(50)`和`VARCHAR(500)`之间的差异不仅仅是长度的不同,它们在存储效率、性能和使用场景上也有所不同。本文将深入探讨这两种字段类型的区别及其对数据库设计的影响。
39 2
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
192 1
|
2月前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
79 1
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
78 0
|
2月前
|
监控 关系型数据库 MySQL
mysql8索引优化
综上所述,深入理解和有效实施这些索引优化策略,是解锁MySQL 8.0数据库高性能查询的关键。
51 0
|
6天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
26天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
34 1