使用spark-redis组件访问云数据库Redis

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本文演示了在Spark Shell中通过spark-redis组件读写Redis数据的场景。所有场景在阿里云E-MapReduce集群内完成,Redis使用阿里云数据库Redis。

作者:无谓 阿里巴巴高级技术专家,2008年加入阿里巴巴集团,先后在B2B和阿里云工作,一直从事大数据和分布式计算相关研究,作为主要开发和运维人员经历了阿里内部大数据集群的上线和发展壮大,现在阿里云EMR团队,负责Spark、Hadoop等计算引擎研发。


本文演示了在Spark Shell中通过spark-redis组件读写Redis数据的场景。所有场景在阿里云E-MapReduce集群内完成,Redis使用阿里云数据库Redis。

创建服务

我们以EMR-3.21.0版本和Redis 4.0为例。EMR集群安装的Spark版本是2.4.3,我们需要使用对应的Spark-Redis 2.4版本,该组件可以支持Redis 2.9.0以上版本。

EMR和Redis需要在同一个VPC网络中创建,同时,在云数据库Redis实例启动之后,需要在“白名单设置”中添加EMR集群IP地址(参考Redis快速入门文档)。

启动Spark Shell

接下去,我们登录EMR Master节点启动Spark Shell。如果Master节点可以连接外网,可以使用package方式加载spark-redis相关jar包:

 --conf spark.redis.host=hostname \
 --conf spark.redis.port=6379 \
 --conf spark.redis.auth=password

spark.redis.host等参数可以在命令行指定,也可以配置在 spark-defaults.conf 中,也可以在代码中指定。其中:

1.spark.redis.host:Redis内网连接地址
2.spark.redis.port:Redis服务端口号
3.spark.redis.auth:创建Redis实例时指定的密码

也可以通过--jars的方式指定依赖的jar包:

 --conf spark.redis.host=hostname \
 --conf spark.redis.port=6379 \
 --conf spark.redis.auth=password

通过Spark写入数据到Redis(RDD)

import com.redislabs.provider.redis._

scala> val data = Array(("key1", "v1"), ("key2", "world"), ("key3", "hello"), ("key4", "Hong"), ("key5", "Kong"))    
data: Array[(String, String)] = Array((key1,v1), (key2,world), (key3,hello), (key4,Hong), (key5,Kong))

scala> val distData = sc.parallelize(data)    
distData: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[0] at parallelize at <console>:29

scala> sc.toRedisKV(distData)

读取Redis(RDD)

stringRDD: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at map at <console>:27

scala> val values = stringRDD.collect()
values: Array[String] = Array(world, hello, v1, Kong, Hong)

scala> println(values.mkString(","))
world,hello,v1,Kong,Hong

Spark DataFrame写入Redis

defined class Person

scala> val personSeq = Seq(Person("John", 30), Person("Peter", 45))
personSeq: Seq[Person] = List(Person(John,30), Person(Peter,45))

scala> val df = spark.createDataFrame(personSeq)
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> df.write.format("org.apache.spark.sql.redis").option("table", "person").save()
                                                                                

参考文档

更多使用spark-redis的方式请参考官方文档:

1.spark-redis Package:https://spark-packages.org/package/RedisLabs/spark-redis
2.spark-redis Github:https://github.com/RedisLabs/spark-redis

_

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
6月前
|
小程序 数据库
微信小程序访问云数据库
微信小程序访问云数据库
72 1
|
1月前
|
NoSQL 网络协议 应用服务中间件
redis,memcached,nginx网络组件
redis,memcached,nginx网络组件
16 0
|
4月前
|
弹性计算 NoSQL 网络安全
软件开发常见之云数据库Redis连接不上如何解决,修改配置后,需要重启下redis服务,配置才能生效呢,是重启,而不是重载配置,最后导致的问题是点击了的重启,配置修改了之后必须点击重启,而不是修改
软件开发常见之云数据库Redis连接不上如何解决,修改配置后,需要重启下redis服务,配置才能生效呢,是重启,而不是重载配置,最后导致的问题是点击了的重启,配置修改了之后必须点击重启,而不是修改
|
5月前
|
分布式计算 DataWorks MaxCompute
MaxCompute操作报错合集之在Spark访问OSS时出现证书错误的问题,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
4月前
|
NoSQL Cloud Native Redis
|
4月前
|
JavaScript 小程序 应用服务中间件
vue 本地/PC端访问微信云数据库
vue 本地/PC端访问微信云数据库
54 0
|
5月前
|
NoSQL 大数据 Redis
分享5款.NET开源免费的Redis客户端组件库
分享5款.NET开源免费的Redis客户端组件库
|
6月前
|
分布式计算 DataWorks API
DataWorks产品使用合集之在DataWorks中,通过spark访问外网的步骤如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
163 0
|
6月前
|
存储 分布式计算 API
adb spark的lakehouse api访问内表数据,还支持算子下推吗
【2月更文挑战第21天】adb spark的lakehouse api访问内表数据,还支持算子下推吗
143 2
|
6月前
|
分布式计算 分布式数据库 API
Spark与HBase的集成与数据访问
Spark与HBase的集成与数据访问