前言
上文【从入门到放弃-Java】并发编程-JUC-LinkedBlockingQueue,我们介绍了基于链表的有界阻塞队列LinkedBlockingQueue,它是Executors.newFixedThreadPool中workQueue使用的阻塞队列。
本文我们来学习ExecutorService.newCachedThreadPool中使用的阻塞队列:SynchronousQueue。
SynchronousQueue
如图和LinkedBlockingQueue一样,都是继承了AbstractQueue类,实现了BlockingQueue和Serializable接口
SynchronousQueue
/**
* Creates a {@code SynchronousQueue} with nonfair access policy.
*/
public SynchronousQueue() {
this(false);
}
/**
* Creates a {@code SynchronousQueue} with the specified fairness policy.
*
* @param fair if true, waiting threads contend in FIFO order for
* access; otherwise the order is unspecified.
*/
public SynchronousQueue(boolean fair) {
//公平模式下使用队列,实现先进先出,非公平模式下使用栈,先进后出
transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
}
因为SynchronousQueue的put、offer、take、poll方法全是调用了Transferer的transfer方法,我们一起来看下这个transfer到底是何方神圣。
Transferer
/**
* Shared internal API for dual stacks and queues.
*/
abstract static class Transferer<E> {
/**
* Performs a put or take.
*
* @param e if non-null, the item to be handed to a consumer;
* if null, requests that transfer return an item
* offered by producer.
* @param timed if this operation should timeout
* @param nanos the timeout, in nanoseconds
* @return if non-null, the item provided or received; if null,
* the operation failed due to timeout or interrupt --
* the caller can distinguish which of these occurred
* by checking Thread.interrupted.
*/
abstract E transfer(E e, boolean timed, long nanos);
}
Transferer是一个抽象类,只有一个抽象方法transfer。可以从注释中看到:
- e是元素根据e是否为null来控制是生产者还是消费者。
- timed是布尔值,控制是否使用超时机制。
- nanos是超时时间。
transfer的具体实现有两个,在Transferer的两个实现类:TransferQueue和TransferStack中
TransferQueue::transfer
E transfer(E e, boolean timed, long nanos) {
/* Basic algorithm is to loop trying to take either of
* two actions:
*
* 1. If queue apparently empty or holding same-mode nodes,
* try to add node to queue of waiters, wait to be
* fulfilled (or cancelled) and return matching item.
*
* 2. If queue apparently contains waiting items, and this
* call is of complementary mode, try to fulfill by CAS'ing
* item field of waiting node and dequeuing it, and then
* returning matching item.
*
* In each case, along the way, check for and try to help
* advance head and tail on behalf of other stalled/slow
* threads.
*
* The loop starts off with a null check guarding against
* seeing uninitialized head or tail values. This never
* happens in current SynchronousQueue, but could if
* callers held non-volatile/final ref to the
* transferer. The check is here anyway because it places
* null checks at top of loop, which is usually faster
* than having them implicitly interspersed.
*/
QNode s = null; // constructed/reused as needed
//判断是消费者还是生产者,如果e为null则消费者,e不为null是生产者
boolean isData = (e != null);
for (;;) {
QNode t = tail;
QNode h = head;
//tail和head是队列的尾部和头部,是一个item为空的QNode,如果队列被其它线程改动了,则continue重新处理
if (t == null || h == null) // saw uninitialized value
continue; // spin
//如果队列为空,或者处于same-mode模式
if (h == t || t.isData == isData) { // empty or same-mode
//如果不是最后一个节点,则继续寻找最后一个有数据的节点
QNode tn = t.next;
if (t != tail) // inconsistent read
continue;
//如果已经tn不为null,则尝试通过CAS把tn置为尾结点,然后重新执行
if (tn != null) { // lagging tail
advanceTail(t, tn);
continue;
}
//如果超时,直接返回null
if (timed && nanos <= 0L) // can't wait
return null;
//如果新节点还未创建,则创建一个新的QNode来承载元素e
if (s == null)
s = new QNode(e, isData);
//尝试通过CAS将t的下一个节点设置为s,如果设置失败,则说明t的下一个节点已经被添加了元素,则需要从头开始处理
if (!t.casNext(null, s)) // failed to link in
continue;
//尝试将tail设置为新建的节点s
advanceTail(t, s); // swing tail and wait
//加入队列后阻塞,把等待线程设置为当前线程,等待唤醒处理
Object x = awaitFulfill(s, e, timed, nanos);
//如果超时中断则删除这个节点并返回null
if (x == s) { // wait was cancelled
clean(t, s);
return null;
}
//如果不是tail节点,则判断是否是head节点,
if (!s.isOffList()) { // not already unlinked
advanceHead(t, s); // unlink if head
//如果返回的x不为null,则设置item为自身
if (x != null) // and forget fields
s.item = s;
//把等待线程设置为null
s.waiter = null;
}
return (x != null) ? (E)x : e;
} else { // complementary-mode
QNode m = h.next; // node to fulfill
if (t != tail || m == null || h != head)
continue; // inconsistent read
Object x = m.item;
//x为null说明已经被消费
if (isData == (x != null) || // m already fulfilled
x == m || // m cancelled
//通过cas将首节点设置为e(null)
!m.casItem(x, e)) { // lost CAS
advanceHead(h, m); // dequeue and retry
continue;
}
advanceHead(h, m); // successfully fulfilled
//唤醒节点设置的线程
LockSupport.unpark(m.waiter);
//返回获取到的item
return (x != null) ? (E)x : e;
}
}
}
- 先判断队列是否为空,或者尾结点与当前节点模式相同,则将节点加入队列尾部
- 等待线程被唤醒(put被take唤醒,take被put唤醒)处理
- 如果队列不为空,或者尾结点与当前节点模式不相同,则唤醒头部节点,取出数据,并把头部节点移除
TransferStack::transfer
E transfer(E e, boolean timed, long nanos) {
/*
* Basic algorithm is to loop trying one of three actions:
*
* 1. If apparently empty or already containing nodes of same
* mode, try to push node on stack and wait for a match,
* returning it, or null if cancelled.
*
* 2. If apparently containing node of complementary mode,
* try to push a fulfilling node on to stack, match
* with corresponding waiting node, pop both from
* stack, and return matched item. The matching or
* unlinking might not actually be necessary because of
* other threads performing action 3:
*
* 3. If top of stack already holds another fulfilling node,
* help it out by doing its match and/or pop
* operations, and then continue. The code for helping
* is essentially the same as for fulfilling, except
* that it doesn't return the item.
*/
//如果e是null,则是REQUEST模式,不为null则是DATA模式
SNode s = null; // constructed/reused as needed
int mode = (e == null) ? REQUEST : DATA;
for (;;) {
SNode h = head;
//如果是队列不为空
if (h == null || h.mode == mode) { // empty or same-mode
//如果超时
if (timed && nanos <= 0L) { // can't wait
if (h != null && h.isCancelled())
//cas方式移除头部节点
casHead(h, h.next); // pop cancelled node
else
return null;
//从头部插入数据
} else if (casHead(h, s = snode(s, e, h, mode))) {
//等待节点被内的元素被处理完毕或等待超时
SNode m = awaitFulfill(s, timed, nanos);
//如果是中断,则清除节点s并返回null
if (m == s) { // wait was cancelled
clean(s);
return null;
}
//从头部取出数据并移除节点
if ((h = head) != null && h.next == s)
casHead(h, s.next); // help s's fulfiller
return (E) ((mode == REQUEST) ? m.item : s.item);
}
//如果节点h没有被处理完
} else if (!isFulfilling(h.mode)) { // try to fulfill
if (h.isCancelled()) // already cancelled
casHead(h, h.next); // pop and retry
else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
for (;;) { // loop until matched or waiters disappear
SNode m = s.next; // m is s's match
if (m == null) { // all waiters are gone
casHead(s, null); // pop fulfill node
s = null; // use new node next time
break; // restart main loop
}
SNode mn = m.next;
//尝试唤醒节点中保存的线程
if (m.tryMatch(s)) {
casHead(s, mn); // pop both s and m
return (E) ((mode == REQUEST) ? m.item : s.item);
} else // lost match
s.casNext(m, mn); // help unlink
}
}
} else { // help a fulfiller
SNode m = h.next; // m is h's match
if (m == null) // waiter is gone
casHead(h, null); // pop fulfilling node
else {
SNode mn = m.next;
//尝试唤醒节点中保存的线程
if (m.tryMatch(h)) // help match
casHead(h, mn); // pop both h and m
else // lost match
h.casNext(m, mn); // help unlink
}
}
}
}
- 先判断队列是否为空,或者尾结点与当前节点模式相同,则将节点加入队列头部
- 等待线程被唤醒(put被take唤醒,take被put唤醒)处理
- 如果队列不为空,或者尾结点与当前节点模式不相同,则唤醒头部节点,取出数据,并把头部节点移除
总结
SynchronousQueue是一个无空间的队列即不可以通过peek来获取数据或者contain判断数据是否在队列中。
当队列为空时,队列执行take或put操作都会调用transfer,使线程进入阻塞,等待一个与tail节点模式互补(即put等take、take等put)的请求。
如果新请求与队列tail节点的模式相同,则将请求加入队列,模式不同,则可进行消费从队列中移除节点。
TransferStack:非公平的栈模式,先进后出(头进头出)
TransferQueue:公平的队列模式,先进先出(尾进头出)
我的理解:
- SynchronousQueue不存储数据,只存储请求
- 当生产或消费请求到达时,如果队列中没有互补的请求,则将会此请求加入队列中,线程进入阻塞 等待互补的请求到达。
- 若是互补的请求到达时,则唤醒队列中的线程,消费请求使用生产请求中的数据内容。
更多文章
见我的博客:https://nc2era.com
written by AloofJr,转载请注明出处