秒懂“线性回归预测”

简介: 线性回归是机器学习中的概念,线性回归预测算法一般用以解决“使用已知样本对未知公式参数的估计”类问题。

线性回归是机器学习中的概念,线性回归预测算法一般用以解决“使用已知样本对未知公式参数的估计”类问题。

举个栗子:

商家卖鞋,可利用历史上每个季度鞋的定价x与销量y,来预估“定价与销量的关系”(y=ax+b),以辅助对鞋子进行最佳定价。

一、几个基本概念

回归(regression):用已知样本对未知公式参数的估计。Y=f(X1, X2, X3),这里回归函数f(X1, X2, X3)可能是任意函数。

线性回归(linear regression):回归的一种,回归函数是一次函数,例如:
Y=f(X1, X2, X3)=aX1 + bX2 + cX3 + d

其中X1,X2,X3是训练样本集中样本的各个维度(feature),a,b,c,d是模型的未知参数。

逻辑回归(logistic regression):将Y归一化到[0, 1]区间。

总而言之,逻辑回归是线性回归的一种,线性回归是回归的一种。

二、线性回归模型经常是有效的

线性回归有什么用?

答:线性回归的预测模型虽然是一元线性方程,但现实中很多应用场景符合这个模型。

例如例子中商品的定价x与商品的销量y之间的关系。一般来说价格越贵则销量越低,价格越便宜则销量越高,于是就能够用y=ax+b这个评估模型来最大化商家的收益:收益=定价销量=xy=x*(ax+b)

什么场景适用于线性回归?

答:很多应用场景不能够使用线性回归模型来进行预测,例如,月份和平均气温,平均气温并不随着月份的增长呈线性增长或下降的趋势。它常用于:
(1)预测或分类,用于分类问题时,需要设定阈值区间,并提前知晓阈值区间与类别的对应关系
(2)线性问题,可以有多个维度(feature)

三、如何求解线性回归中的维度参数?

在已知样本集set的时候,如果根据样本集得到Y=f(X1,X2,X3,…)=aX1+bX2+cX3+…中的未知参数a,b,c呢?

这得先介绍最小二乘法,以及梯度下降法。

什么是最小二乘法?

答:最小二乘法适用于任意多维度的线性回归参数求解,它可求解出一组最优a,b,c解,使得对于样本集set中的每一个样本data,用Y=f(X1,X2,X3,…)来预测样本,预测值与实际值的方差最小。

画外音:方差是我们常见的估值函数(cost function),用来评估回归出来的预测函数效果。

什么是梯度下降法?

答:最小二乘法实际上只定义了估值函数是方差,真正求解a,b,c的方法是梯度下降法,这是一个枚举型的求解算法,其算法步骤如下:
(1)使用随机的a0, b0, c0作为初始值
(2)分别求解最优a, b, c…,对于每个维度参数的求解,步骤为(以a为例):
2.1)设定a范围的最大值与最小值
2.2)设定a计算的梯度步长(这就是它叫梯度下降法的原因)
2.3)固定其他维度参数
2.4)计算a的所有取值中,使得估值函数最小的那个a即为所求

数学上可以证明:
(1)上述算法是可以收敛的(显而易见)
(2)分别求出a,b,c的最优值,组合起来就是整体的最优值(没这么明显了),这个结论是很重要的,假设样本个数为n,计算a,b,c的算法复杂度都是线性的O(m),这个结论让算法的整体复杂度是nO(m) +nO(m) + nO(m),而不是[nO(m) ][nO(m)][nO(m)]的关系。

画外音:计算机非常适合干这个事情,确定范围和梯度后,这是一个线性复杂度的算法。

四、再来个栗子说明

已知过去4个季度销量与价格的数据样本集为:

价格x为10时,销量y为80

价格x为20时,销量y为70

价格x为30时,销量y为60

价格x为40时,销量y为65

假设销量y与价格x是线性关系:

y=ax +b

假设a的范围为[-2, 2],a的梯度为1

假设b的范围为[80, 120],b的梯度为10

画外音:计算机计算的时候,范围会很大,梯度精度会很细。

求解最优a和b的过程为:

(1)设a0=-2,b0=80,从最边缘开始求解

(2.1)先求最优a,固定b=80不动,a从-2到2梯度递增,求最优a的解

image.png

可以看到,a=-1时方差最小,故a=-1是最优解。

(2.2)再求最优b,固定2.1求出的最优a=-1,b从80到120梯度递增,求最优b的解

image.png

可以看到,b=90时方差最小,故b=90是最优解。

(3)得到最优解a=-1,b=90,于是得到定价与销量的关系是:y=-x+90

(4)最终得到

收益=定价销量=xy=x*(-x+90)

于是,当价格定在45元时,整体收益能够最大化。

五、总结

  • 逻辑回归是线性回归的一种,线性回归是回归的一种
  • 线性回归可以用在预测或分类,多维度(feature)线性问题求解上
  • 可以用最小二乘法,梯度下降法求解线性预测函数的系数
  • 梯度下降法的核心步骤是:设置系数范围,设定系数梯度,固定其他系数,对某一个系数穷举求方差最小最优解

希望这一分钟,对线性回归预测有了一点点了解。

目录
相关文章
|
数据采集 自然语言处理 Python
如何使用Gensim库进行情感分析?
使用Gensim进行情感分析,需安装Gensim库,导入相关模块(Word2Vec, KeyedVectors, nltk等)。数据预处理涉及分词和去除停用词,然后用Word2Vec训练词向量模型。已训练的模型可加载用于计算句子情感分数,通过平均词向量表示句子情感。代码提供了一个基础的情感分析流程,可按需求调整。
346 1
|
9月前
|
机器学习/深度学习 编解码 人工智能
Qwen2.5-VL Technical Report
Qwen2.5-VL是阿里云团队推出的Qwen系列最新旗舰模型,具备显著提升的基础能力和创新功能。它在视觉识别、对象定位、文档解析和长视频理解等方面实现突破,支持精准的边界框/点定位及复杂输入处理。通过技术创新如窗口注意力、动态帧率采样和绝对时间编码,该模型在多模态任务中表现出色,在多个基准测试中超越顶级闭源模型,适用于从边缘AI到高性能计算的广泛场景。
|
Web App开发 iOS开发 MacOS
如何在浏览器中启用夜间模式?
【10月更文挑战第10天】
|
11月前
|
人工智能 编解码 JSON
Qwen2.5-VL:阿里通义千问最新开源视觉语言模型,能够理解超过1小时的长视频
Qwen2.5-VL 是阿里通义千问团队开源的视觉语言模型,具有3B、7B和72B三种不同规模,能够识别常见物体、分析图像中的文本、图表等元素,并具备作为视觉Agent的能力。
5221 18
Qwen2.5-VL:阿里通义千问最新开源视觉语言模型,能够理解超过1小时的长视频
|
12月前
|
前端开发 JavaScript 开发者
React 按钮组件 Button
本文介绍了 React 中按钮组件的基础概念,包括基本的 `<button>` 元素和自定义组件。详细探讨了事件处理、参数传递、状态管理、样式设置和可访问性优化等常见问题及其解决方案,并提供了代码示例。帮助开发者避免易错点,提升按钮组件的使用体验。
602 77
|
安全 搜索推荐 大数据
大数据与智慧城市:数据驱动的城市管理
【10月更文挑战第31天】在信息技术飞速发展的今天,大数据成为推动智慧城市转型的核心驱动力。本文探讨了大数据在智慧交通、环保、安防、医疗和政务等领域的应用,揭示了数据驱动的城市管理带来的深刻变革,同时分析了面临的数据安全、隐私保护和数据孤岛等挑战,并展望了大数据在智慧城市建设中的未来前景。
1112 3
|
自然语言处理
【NLP】from glove import Glove的使用、模型保存和加载
使用 from glove import Glove 进行词向量训练、保存和加载的基本示例。
236 2
【NLP】from glove import Glove的使用、模型保存和加载
|
负载均衡 Java Spring
@EnableFeignClients注解源码解析
@EnableFeignClients注解源码解析
310 14
|
机器学习/深度学习 自然语言处理 并行计算
多模态大模型技术原理与实战(2)
大模型被广泛应用有以下几个前提:效果好、效率高、成本可控,目前,大模型在这几个方面还不够理想。
652 5
|
自然语言处理
【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型
本文探讨了如何提高使用gensim库加载word2vec预训练词向量模型的效率,提出了三种解决方案:保存模型以便快速重新加载、仅保存和加载所需词向量、以及使用Embedding工具库代替word2vec原训练权重。
905 2