突破Java面试(17)-ElasticSearch的部署架构

简介: 阿里云offer 5000人!7月9日 19:00,14个团队大牛空降直播间,在线直招50多个岗位,想要进入阿里云吗?快来点击下面链接投递简历吧

图片无法显
点击图片或戳我查看详情和投简历

1 面试题

  • ES集群部署架构如何
  • 每个索引的数据量大概多少
  • 每个索引大概有多少分片

2 考点分析

问你生产环境咋部署的,说白了,没啥技术含量,就是看你有没有在真正的生产环境里做过ES!

有些同学可能没在生产环境做过,没在线上部署过ES集群,也没实际玩过,也没往ES集群里面导入过几千万甚至是几亿的数据量,可能你就不太清楚这里面的一些生产项目中的细节

如果你是自己就玩过demo,没碰过真实的ES集群,那你可能此时会懵,但是别怕!
你一定要云淡风轻的回答,表示你确实干过ES!

3 详解

如果你确实干过ES,那你肯定了解你们生产es集群的实际情况,部署了几台机器?有多少个索引?每个索引有多大数据量?每个索引给了多少个分片?你肯定知道!

但是如果你确实没干过,也别虚,我给你说一个基本的版本,你到时候就简单说一下就好了

  • ES生产集群我们部署了5台机器,每台机器是6核64G的,集群总内存是320G
  • 我们ES集群的日增量数据大概是2000万条,每天日增量数据大概是500MB,每月增量数据大概是6亿,15G。目前系统已经运行了几个月,现在es集群里数据总量大概是100G左右
  • 目前线上有5个索引(这个结合你们自己业务来,看看自己有哪些数据可以放ES的),每个索引的数据量大概是20G,所以这个数据量之内,我们每个索引分配的是8个shard,比默认的5个shard多了3个shard

大概就这么意思一下就OK!

参考

《Java工程师面试突击第1季-中华石杉老师》

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
目录
相关文章
|
2月前
|
负载均衡 Java API
grpc-java 架构学习指南
本指南系统解析 grpc-java 架构,涵盖分层设计、核心流程与源码结构,结合实战路径与调试技巧,助你从入门到精通,掌握高性能 RPC 开发精髓。
314 7
|
2月前
|
机器学习/深度学习 人工智能 监控
Java与AI模型部署:构建企业级模型服务与生命周期管理平台
随着企业AI模型数量的快速增长,模型部署与生命周期管理成为确保AI应用稳定运行的关键。本文深入探讨如何使用Java生态构建一个企业级的模型服务平台,实现模型的版本控制、A/B测试、灰度发布、监控与回滚。通过集成Spring Boot、Kubernetes、MLflow和监控工具,我们将展示如何构建一个高可用、可扩展的模型服务架构,为大规模AI应用提供坚实的运维基础。
280 0
|
2月前
|
存储 监控 安全
132_API部署:FastAPI与现代安全架构深度解析与LLM服务化最佳实践
在大语言模型(LLM)部署的最后一公里,API接口的设计与安全性直接决定了模型服务的可用性、稳定性与用户信任度。随着2025年LLM应用的爆炸式增长,如何构建高性能、高安全性的REST API成为开发者面临的核心挑战。FastAPI作为Python生态中最受青睐的Web框架之一,凭借其卓越的性能、强大的类型安全支持和完善的文档生成能力,已成为LLM服务化部署的首选方案。
存储 jenkins 持续交付
545 2
|
3月前
|
算法 Java
50道java集合面试题
50道 java 集合面试题
|
3月前
|
算法 Java
50道java基础面试题
50道java基础面试题
|
4月前
|
消息中间件 Java 数据库
Java 基于 DDD 分层架构实战从基础到精通最新实操全流程指南
本文详解基于Java的领域驱动设计(DDD)分层架构实战,结合Spring Boot 3.x、Spring Data JPA 3.x等最新技术栈,通过电商订单系统案例展示如何构建清晰、可维护的微服务架构。内容涵盖项目结构设计、各层实现细节及关键技术点,助力开发者掌握DDD在复杂业务系统中的应用。
817 0
|
4月前
|
机器学习/深度学习 人工智能 Java
Java 技术支撑下 AI 与 ML 技术融合的架构设计与落地案例分析
摘要: Java与AI/ML技术的融合为智能化应用提供了强大支持。通过选用Deeplearning4j、DJL等框架解决技术适配问题,并结合Spring生态和JVM优化提升性能。在金融风控、智能制造、医疗影像等领域实现了显著效果,如审批效率提升3倍、设备停机减少41%、医疗诊断延迟降低80%。这种技术融合推动了多行业的智能化升级,展现了广阔的应用前景。
339 0