Spark学习之编程进阶——累加器与广播(5)

简介: Spark学习之编程进阶——累加器与广播(5)1. Spark中两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable)。累加器对信息进行聚合,而广播变量用来高效分发较大的对象。2. 共享变量是一种可以在Spark任务中使用的特殊类型的变量。3. 累加器的用法:通过在驱动器中调用SparkContex

Spark学习之编程进阶——累加器与广播(5)

1. Spark中两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable)。累加器对信息进行聚合,而广播变量用来高效分发较大的对象。

2. 共享变量是一种可以在Spark任务中使用的特殊类型的变量。

3. 累加器的用法:

  • 通过在驱动器中调用SparkContext.accumulator(initialValue)方法,创建出存有初始值的累加器。返回值为org.apache.spark.Accumlator[T]对象,其中T是初始值initialValue的类型。
  • Spark闭包里的执行器代码可以使用累加器的+=方法(在Java中是add)增加累加器的值。
  • 驱动器程序可以调用累加器的value属性(在Java中使用value()或setValue()来访问累加器的值。

    Python中实现累加空行

    file = sc.textFile(inputFile)
    #创建Accumulator[Int]并初始化为0
    blankLines = sc.accumulator(0)

    def extractCallSigns(Line):
        globle blankLines #访问全局变量
        if (line == ""):
            blankLines += 1
            return line.split("")

    callSigns = file.flatMap(extractCallSigns)
    callSigns.saveAsTextFile(outputDir + "/callsigns")
    print "Blank lines:%d" % blankLines.value

4. Spark的广播变量,它可以让程序高效地向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。

Scala代码使用广播变量查询国家
    //查询RDD contactCounts中的呼号的对应位置。将呼号前缀
    //读取为国家代码进行查询
    val signPrefixes = sc.broadcast(loadCallSignTable())
    val countryContactCounts = contactCounts.map{case (sign,count) =>
        val country = lookupInArray(sign,signPrefixes.value)
        (country,count)
        }.reduceByKey((x,y) => x+y)
        countryContactCounts.saveAsTextFile(outputDir + "/countries.text")

5. Spark在RDD上提供pipe()方法。Spark的pipe()方法可以让我们使用任意一种语言实现Spark作业中的部分逻辑,只要它的读写Unix标准流就行。

目录
相关文章
|
2月前
|
分布式计算 Kubernetes 调度
Kubeflow-Spark-Operator-架构学习指南
本指南系统解析 Spark Operator 架构,涵盖 Kubebuilder 开发、控制器设计与云原生集成。通过四阶段学习路径,助你从部署到贡献,掌握 Kubernetes Operator 核心原理与实战技能。
194 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
3 秒音频也能克隆?拆解 Spark-TTS 架构的极致小样本学习
本文深入解析了 Spark-TTS 模型的架构与原理,该模型仅需 3 秒语音样本即可实现高质量的零样本语音克隆。其核心创新在于 BiCodec 单流语音编码架构,将语音信号分解为语义 Token 和全局 Token,实现内容与音色解耦。结合大型语言模型(如 Qwen 2.5),Spark-TTS 能直接生成语义 Token 并还原波形,简化推理流程。实验表明,它不仅能克隆音色、语速和语调,还支持跨语言朗读及情感调整。尽管面临相似度提升、样本鲁棒性等挑战,但其技术突破为定制化 AI 声音提供了全新可能。
592 35
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
252 0
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
187 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
分布式计算 算法 Spark
spark学习之 GraphX—预测社交圈子
spark学习之 GraphX—预测社交圈子
362 0
|
分布式计算 Scala Spark
educoder的spark算子学习
educoder的spark算子学习
207 0
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
182 0
|
SQL 分布式计算 Apache
Apache Spark 系列技术直播 - Spark SQL进阶与实战
Spark SQL进阶与实战 Spark相关组件介绍 Spark及其依赖组件 Hive Metastore介绍 Spark Thrift Server介绍 表与ETL Spark表基本概念 Spark建表最佳实践 Spark ETL最佳实践 动态分区表示例分析 Spark SQL查询最佳实践 Sp.
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
359 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
946 2
ClickHouse与大数据生态集成:Spark & Flink 实战