基于Docker的TensorFlow机器学习框架搭建和实例源码解读

简介: 概述:基于Docker的TensorFlow机器学习框架搭建和实例源码解读,TensorFlow作为最火热的机器学习框架之一,Docker是的容器,可以很好的结合起来,为机器学习或者科研人员提供便捷的机器学习开发环境,探索人工智能的奥秘,容器随开随用方便快捷。源码解析TensorFlow容器创建和示例程序运行,为热爱机器学者降低学习难度。默认机器已经装好了Docker(D

概述:基于Docker的TensorFlow机器学习框架搭建和实例源码解读,TensorFlow作为最火热的机器学习框架之一,Docker是的容器,可以很好的结合起来,为机器学习或者科研人员提供便捷的机器学习开发环境,探索人工智能的奥秘,容器随开随用方便快捷。源码解析TensorFlow容器创建和示例程序运行,为热爱机器学者降低学习难度。

默认机器已经装好了Docker(Docker安装和使用可以看我另一篇博文:Ubuntu16.04安装Docker1.12+开发实例+hello world+web应用容器)。

这里写图片描述

1.下载TensorFlow镜像

docker pull tensorflow/tensorflow
#或者
#sudo docker pull tensorflow/tensorflow

2.创建TensorFlow容器,源码解读

docker run --name xiaolei-tensortflow -it -p 8888:8888 -v ~/tensorflow:/notebooks/data  tensorflow/tensorflow
  • docker run运行镜像,
  • --name为容器创建别名,
  • -it保留命令行运行,
  • -p 8888:8888将本地的8888端口http://localhost:8888/映射,
  • -v ~/tensorflow:/notebooks/data 将本地的~/tensorflow文件夹挂载到新建容器的/notebooks/data下(这样创建的文件可以保存到本地~/tensorflow)
  • tensorflow/tensorflow为指定的镜像,默认标签为latest(即tensorflow/tensorflow:latest)

这里写图片描述

3.开启TensorFlow容器

3.1.可以直接从命令行中右键打开连接,或者在浏览器中输入localhost:8888,然后将命令行中的token粘贴上去。

这里写图片描述

4.开始TensorFlow编程(Python语言)

4.1.在首页可以New一个Python项目

这里写图片描述

4.2.tensorflow示例源码解读

from __future__ import print_function
#导入tensorflow
import tensorflow as tf
#输入两个数组,input1和input2然后相加,输出结果
with tf.Session():
    input1 = tf.constant([1.0, 1.0, 1.0, 1.0])
    input2 = tf.constant([2.0, 2.0, 2.0, 2.0])
    output = tf.add(input1, input2)
    result = output.eval()
    print("result: ", result)

4.3.运行程序,输出的结果为(运行成功)

result:  [ 3.  3.  3.  3.]

这里写图片描述

5.其他 linux,TensorFlow,Docker相关操作

5.1.关闭TensorFlow和开启TensorFlow环境

#关闭tensorflow容器
docker stop xiaolei-tensortflow

#开启TensorFlow容器
docker start xiaolei-tensortflow
#浏览器中输入 http://localhost:8888/

5.2.解决文件的读写权限

#查看读写权限
ls -l
#将tensorflow 变为属于xiaolei(系统默认)用户
sudo chown -R xiaolei tensorflow/
#将tensorflow 变为属于xiaolei(系统默认)用户组
sudo chgrp -R xiaolei tensorflow/
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
82 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
14天前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
172 3
|
4月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
194 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
117 5
|
6月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
252 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
5月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
111 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
6月前
|
机器学习/深度学习 人工智能 算法
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
178 1
|
7月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
85 0
|
7月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
77 0

热门文章

最新文章