AI平台-TransmogrifAI【AutoML】

简介: TransmogrifAI(发音为 trăns-mŏgrə-fī)是一个用 Scala 编写的 AutoML 库,它运行在 Spark 之上。它的开发重点是通过机器学习自动化加速机器学习开发人员的工作效率,以及实施编译时类型安全、模块化和重用的 API。

TransmogrifAI(发音为 trăns-mŏgrə-fī)是一个用 Scala 编写的 AutoML 库,它运行在 Spark 之上。它的开发重点是通过机器学习自动化加速机器学习开发人员的工作效率,以及实施编译时类型安全、模块化和重用的 API。通过自动化,它可以实现接近手动调整模型的精度,并且几乎可以减少 100 倍的时间。

1.TransmogrifAI背景

在2016年,Salesforce推出了爱因斯坦人工智能平台。官网介绍道,因为拥有技术先进的机器学习、深度学习、预测分析、自然语言处理和智能数据挖掘能力,爱因斯坦将会为每一个客户自动定制它的模型,它会学习,会自我调整,会因为每一次互动和更多的数据变得更聪明。最重要的是,爱因斯坦的智能将会被嵌入到商业业务的范围内,自动挖掘相关的商业洞察,预测客户未来的行为,积极推荐最优的下一步行动,甚至自动执行任务。而TransmogrifAI则是爱因斯坦人工智能平台背后的关键软件。
2018年,Salesforce开源了TransmogrifAI,可以让任何人在自己的数据中心使用它。TransmogrifAI可以帮助企业自己构建机器学习系统,这有利于降低机器学习门槛,让企业更好地利用机器学习促进业务发展。

“在Salesforce,我们的客户可能希望预测一系列结果——从客户流失、销售预测、潜在用户转化,到数字广告点击、网购、报价接受、设备故障和延迟付款等。” - 官网

2.TransmogrifAI简介

2.1 TransmogrifAI优势:

  • 在几个小时而不是几个月内构建生产就绪机器学习应用
  • 建立机器学习模型而无需获得博士学位
  • 在机器学习中构建模块化、可重用与强类型的机器学习工作流程
  • 基于最新版的Spark构建,利于使用和扩展

2.2 TransmogrifAI结构

TransmogrifAI是一个基于Scala和SparkML构建的库,它封装了机器学习过程的五个主要步骤,包括特征推断(Feature Inference)、自动化特征工程(Transmogrification)、自动化特征验证(Feature Validation)、自动化模型选择(Model Selection)、超参数优化(Hyperparameter Optimization)。
image
1. 特征推断:
TransmogrifAI允许用户为其数据指定类型,自动把原始预测变量和响应信号提取为“特征”,比如地理位置、电话号码、邮政编码……
2. 自动化特征工程:
虽然找到正确的类型有助于数据推理和减少对下游的不良影响,但最终所有特征都是要被转换成数字表示的。只有这样,机器学习算法才能寻找并利用其中的规律。这个过程被称为特征工程。
3. 自动化特征验证:
TransgmogrifAI包含执行自动特征验证的算法,可以删除几乎没有预测能力的特征——随着时间的推移而使用的特征,表现出零方差的特征,或者在训练样本中的分布与预测时的分布存在显着不同的特征。
4. 自动化模型选择:
TransmogrifAI的模型选择器可以在数据上运行多种算法,并比较它们的平均验证错误,从中挑出最佳算法。除此之外,它还能通过适当地对数据进行采样并重新校准预测以匹配真实的先验,自动处理不平衡数据的问题,进一步提高模型性能。
5. 超参数优化:
上述自动化步骤的基础都涉及超参数优化,它几乎无处不在。

目前,TransmogrifAI在Salesforce内部已经成功把训练模型所需的总时间从几周、几个月缩短到了几个小时。而封装所有这些复杂操作的代码却非常简单,只需短短几行就能搞定。

3.相关资料

  1. https://zhuanlan.zhihu.com/p/42384428
  2. https://transmogrif.ai/
  3. https://docs.transmogrif.ai/en/stable/
目录
相关文章
|
16天前
|
存储 人工智能 Serverless
AI 短剧遇上函数计算,一键搭建内容创意平台
为了帮助更多内容创作者和企业快速实现 AI 短剧创作,函数计算 FC 联合百炼联合推出“AI 剧本生成与动画创作解决方案”,通过函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 生图平台,实现从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。创作者只需通过简单操作,就能快速生成高质量的剧本,并一键转化为精美的动画。
|
1月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
3天前
|
人工智能 物联网 开发者
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
Oumi 是一个完全开源的 AI 平台,支持从 1000 万到 4050 亿参数的模型训练,涵盖文本和多模态模型,提供零样板代码开发体验。
115 43
Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型的综合性平台
|
5月前
|
人工智能 运维 监控
首个云上 AI 原生全栈可观测平台来了!
9月21日,2024 云栖大会,阿里云发布全新的 AI 原生全栈可观测平台,首次实现云上 AI 大模型从训练到推理再到应用的全链路实时观测、告警与诊断。
318 13
|
25天前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
164 22
|
2月前
|
人工智能 数据可视化 JavaScript
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
NodeTool 是一个开源的 AI 工作流可视化构建器,通过拖放节点的方式设计复杂的工作流,无需编码即可快速原型设计和测试。它支持本地 GPU 运行 AI 模型,并与 Hugging Face、OpenAI 等平台集成,提供模型访问能力。
134 14
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
|
1月前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
74 10
|
2月前
|
人工智能 自然语言处理 前端开发
Lobe Vidol:AI数字人交互平台,可与虚拟人和3D模型聊天互动
Lobe Vidol是一款开源的AI数字人交互平台,允许用户创建和互动自己的虚拟偶像。该平台提供流畅的对话体验、丰富的动作姿势库、优雅的用户界面设计以及多种技术支持,如文本到语音和语音到文本技术。Lobe Vidol适用于娱乐互动、在线教育、客户服务、品牌营销和社交媒体等多个应用场景。
184 7
Lobe Vidol:AI数字人交互平台,可与虚拟人和3D模型聊天互动
|
21天前
|
SQL 人工智能 数据管理
跨云数据管理平台DMS:构建Data+AI的企业智能Data Mesh
跨云数据管理平台DMS助力企业构建智能Data Mesh,实现Data+AI的统一管理。DMS提供开放式元数据服务OneMeta、一站式智能开发平台和云原生AI数据平台,支持多模数据管理和高效的数据处理。结合PolarDB、AnalyticDB等核心引擎,DMS在多个垂直场景中展现出显著优势,如智能营销和向量搜索,提升业务效率和准确性。通过DataOps和MLOps的融合,DMS为企业提供了从数据到AI模型的全生命周期管理,推动数据驱动的业务创新。
|
23天前
|
机器学习/深度学习 人工智能 缓存
基于英特尔平台加速 AI 应用及 LLM 推理性能介绍|龙蜥大讲堂第115期
本文摘自龙蜥大讲堂英特尔 AI 软件工程师黄文欢的分享,主要包括以下三个方面的内容: 1. 第五代英特尔至强处理器 2. LLM 推理加速框架 xFast Transformer 及其优化策略 3. 性能数据及 Demo 展示

热门文章

最新文章