【机器学习】机器学习中的文本摘要入门指南

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 鱼羊 编译整理 量子位 出品 | 公众号 QbitAI 如果你是科研狗,一定有过被摘要支配的恐惧。 如果你想在浩如烟海的互联网信息里寻找重点,一定想要快速排除多余的内容。 基于机器学习的自动文本摘要工具,将一键解放你的双手,化身抓重点小能手,为你捕捉关键,排除冗余。
鱼羊 编译整理 量子位 出品 | 公众号 QbitAI

如果你是科研狗,一定有过被摘要支配的恐惧。

如果你想在浩如烟海的互联网信息里寻找重点,一定想要快速排除多余的内容。

基于机器学习的自动文本摘要工具,将一键解放你的双手,化身抓重点小能手,为你捕捉关键,排除冗余。

近日,有位叫Alfrick Opidi的小哥在入门级深度学习云平台FloydHub 上写了一篇关于自动文本摘要的入门教程,量子位对其进行了编译,希望能帮助大家理解。

自动文本摘要属于自然语言处理(NLP)的范畴,通常用机器学习算法来实现,目前实现的方法主要有两种:

抽取式

就像一支荧光笔,抽取式文本摘要就是给原始文本中的重点单词标上高亮,再将其加以组合形成摘要。

概要式

概要式文本摘要更接近于人类的思维——通过深度学习对原始文本进行释义并提炼主旨,而后形成摘要。相比于抽取式,概要式文本摘要更像在说人话。

很显然概要式的表现会比抽取式更好,然而这种算法需要复杂的深度学习技术和语言模型支撑,还面临这诸如自然语言生成这样的NLP问题。

因此抽取式方法仍然广泛流行。

鉴于本文是一篇入门指南,接下来提到的内容都是基于抽取式方法来实现的。

文本摘要基础步骤

文本摘要是如何实现的呢?

举个例子,用文本摘要机器学习算法来对下面这段文字进行处理:

夜里志明和春娇乘坐出租车去城里聚会。聚会上春娇晕倒并被送进了医院。她被诊断出患有脑损伤,医生告诉志明要一直陪着她直到她好起来。因此,志明待在医院整整陪了她三天。

第一步:把段落转成句子

首先要做的是分割段落。

  1. 夜里志明和春娇乘坐出租车去城里聚会

  2. 聚会上春娇晕倒并被送进了医院

  3. 她被诊断出患有脑损伤,医生告诉志明要一直陪着她直到她好起来

  4. 因此,志明待在医院整整陪了她三天

第二步:文本处理

接下来,删掉没什么意义的连接词、数字、标点。

就像这样:

  1. 夜里志明春娇乘坐出租车去城里聚会

  2. 聚会春娇晕倒送医院

  3. 诊断脑损伤医生告诉志明陪着好起来

  4. 志明待在医院天

第三步:标注

然后,对句子进行标记,获得句子中的所有单词:

[‘志明’,‘春娇’,‘乘坐’,‘出租车’,‘去’,‘夜里’,‘聚会’,‘城里‘,‘聚会’,‘春娇’,‘晕倒’,‘医院’,‘诊断’,‘脑’,‘损伤’,‘医生’,‘告诉’,‘志明’,‘陪’,‘好起来’,‘志明’,‘待’,‘医院’,‘天’]

第四步:评估单词的加权出现频率

现在就可以计算单词们的加权出现频率了。

计算公式是:单词加权出现频率 = 单词出现次数 / 段落中最常用单词出现次数

第五步:用加权频率替换单词

把句子中的每个单词都替换成加权频率,就可以计算这个句子的权重。比如在志明和春娇这个例子当中,第一句在整个段落中的权重是最大的,那么它就将构成摘要的主体部分。

以上是机器学习实现文本摘要的基本步骤,下面我们来看看如何在真实世界中构建摘要生成器。

亲手构建摘要生成器

使用Python的 NLTK 工具包,我们可以亲自动手创造一个文本摘要生成器,实现对Web文章的摘要生成。

来看看代码蓝图:

1# Creating a dictionary for the word frequency table

2 frequency_table = _create_dictionary_table(article)  3  4 # Tokenizing the sentences  5 sentences = sent_tokenize(article)  6  7 # Algorithm for scoring a sentence by its words  8 sentence_scores = _calculate_sentence_scores(sentences, frequency_table)  9 10 # Getting the threshold 11 threshold = _calculate_average_score(sentence_scores) 12 13 # Producing the summary 14 article_summary = _get_article_summary(sentences, sentence_scores,  1.5  * threshold) 15 16 print(article_summary)

第一步:准备数据

这里使用了Beautiful Soup库。

1import bs4 as BeautifulSoup

2 import  urllib.request    3  4 # Fetching the content from the URL  5 fetched_data = urllib.request.urlopen( 'https://en.wikipedia.org/wiki/20th_century' )  6  7 article_read = fetched_data.read()  8  9 # Parsing the URL content and storing in a variable 10 article_parsed = BeautifulSoup.BeautifulSoup(article_read, 'html.parser' ) 11 12 # Returning 

 tags

13paragraphs = article_parsed.find_all('p')1415article_content = ''1617# Looping through the paragraphs and adding them to the variable18for p in paragraphs:  19    article_content += p.text

使用urllib.request实现网页数据的抓取,再调用BeautifulSoup来解析网页数据。

第二步:数据处理

为确保抓取到的文本数据尽可能没有噪音,需要做一些基本的文本清理。这里使用了 NLTK 的 stopwords PorterStemmer 

PorterStemmer可以将单词还原为词根形式,就是说能把 cleaning, cleaned, cleaner 都还原成 clean。

此外还要创建一个字典,来存储文本中每一个单词的出现频率。

循环整个文本来消除 “a”、“the” 这样的停止词,并记录单词们的出现频率。

1from nltk.corpus import stopwords

2from nltk.stem import PorterStemmer 3def _create_dictionary_table(text_string) -> dict: 4 5    # Removing stop words 6    stop_words = set(stopwords.words("english")) 7 8    words = word_tokenize(text_string) 910    # Reducing words to their root form11    stem = PorterStemmer()1213    # Creating dictionary for the word frequency table14    frequency_table = dict()15    for wd in words:16        wd = stem.stem(wd)17        if wd in stop_words:18            continue19        if wd in frequency_table:20            frequency_table[wd] += 121        else:22            frequency_table[wd] = 12324    return frequency_table

第三步:将文章标注成句子

1from nltk.tokenize import word_tokenize, sent_tokenize

23sentences = sent_tokenize(article)

第四步:计算句子的权重

句子的权重取决于它包含的单词的出现频率。

1def _calculate_sentence_scores(sentences, frequency_table) -> dict:   

2 3    # Algorithm for scoring a sentence by its words 4    sentence_weight = dict() 5 6    for sentence in sentences: 7        sentence_wordcount = (len(word_tokenize(sentence))) 8        sentence_wordcount_without_stop_words = 0 9        for word_weight in frequency_table:10            if word_weight in sentence.lower():11                sentence_wordcount_without_stop_words += 112                if sentence[:7in sentence_weight:13                    sentence_weight[sentence[:7]] += frequency_table[word_weight]14                else:15                    sentence_weight[sentence[:7]] = frequency_table[word_weight]1617        sentence_weight[sentence[:7]] = sentence_weight[sentence[:7]] /        sentence_wordcount_without_stop_words1819    return sentence_weight

需要注意的是,长句有可能得到不必要的高分,为了避免这一点,要将 句子的总分数除以该句的单词数 

第五步:计算句子的阈值

为了进一步优化结果,要计算句子的平均分数。使用此阈值,可以避免分数较低的句子的干扰。

1def _calculate_average_score(sentence_weight) -> int:

2 3    # Calculating the average score for the sentences 4    sum_values = 0 5    for entry in sentence_weight: 6        sum_values += sentence_weight[entry] 7 8    # Getting sentence average value from source text 9    average_score = (sum_values / len(sentence_weight))1011    return average_score

如果感兴趣,FloydHub提供了进行深度学习模型训练的环境,你可以在FloydHub Notebook上运行整个代码。

还可以更上档次

以上只是机器学习中文本摘要算法的入门小知识,想要达到更上档次的效果,甚至可以把抽取式方法和概要式方法结合起来。

△ 图片来自Taming Recurrent Neural Networks for Better Summarization

传送门

如果还想更深入地了解机器学习中的文本摘要,不妨看看以下资源。

WikiHow,一个大规模、高质量的文本摘要数据集:

https://www.wikihow.com/Main-Page

WikiHow食用指南:

https://arxiv.org/pdf/1810.09305.pdf

用指针生成网络(Pointer-Generator Networks)实现文本摘要:

https://arxiv.org/pdf/1704.04368.pdf http://www.abigailsee.com/2017/04/16/taming-rnns-for-better-summarization.html

如何在文本摘要中使用基于预训练的编码器-解码器框架:

https://arxiv.org/pdf/1902.09243.pdf

原文链接:

https://blog.floydhub.com/gentle-introduction-to-text-summarization-in-machine-learning/

本来转自商业新知网

目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
1月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
82 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
53 2
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
40 1
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
78 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
46 0
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
32 1
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
87 2
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
43 4

热门文章

最新文章