Spark机器学习实战 (十一) - 文本情感分类项目实战

简介: 将结合前述知识进行综合实战,以达到所学即所用。文本情感分类这个项目会将分类算法、文本特征提取算法等进行关联,使大家能够对Spark的具体应用有一个整体的感知与了解。

0 相关源码

将结合前述知识进行综合实战,以达到所学即所用。文本情感分类这个项目会将分类算法、文本特征提取算法等进行关联,使大家能够对Spark的具体应用有一个整体的感知与了解。

1 项目总体概况

2 数据集概述

3 数据预处理

4 文本特征提取

提取,转换和选择特征
本节介绍了使用特征的算法,大致分为以下几组:

  • 提取:从“原始”数据中提取特征
  • 转换:缩放,转换或修改特征
  • 选择:从中选择一个子集一组更大的特征局部敏感散列(LSH):这类算法将特征变换的各个方面与其他算法相结合。
    (TF-IDF) 是在文本挖掘中广泛使用的特征向量化方法,以反映术语对语料库中的文档的重要性。

用t表示一个术语,用d表示文档,用D表示语料库。术语频率TF(t,d)是术语t出现在文档d中的次数,而文档频率DF(t,D)是包含术语的文档数T

如果我们仅使用术语频率来衡量重要性,那么过分强调经常出现但很少提供有关文档的信息的术语非常容易,例如: “a”,“the”和“of”。
如果术语在语料库中经常出现,则表示它不包含有关特定文档的特殊信息。

  • 反向文档频率是术语提供的信息量的数字度量:

其中| D |是语料库中的文档总数。由于使用了对数,如果一个术语出现在所有文档中,其IDF值将变为0.
请注意,应用平滑术语以避免语料库外的术语除以零。

  • TF-IDF测量仅仅是TF和IDF的乘积

术语频率和文档频率的定义有几种变体。在MLlib中,我们将TF和IDF分开以使它们变得灵活。

TF:HashingTF和CountVectorizer都可用于生成术语频率向量。

HashingTF是一个转换器,它接受一组术语并将这些集合转换为固定长度特征向量。
在文本处理中,“一组术语”可能是一些单词。 HashingTF利用散列技巧。通过应用散列函数将原始特征映射到索引(术语)。这里使用的哈希函数是MurmurHash 3.然后,基于映射的索引计算术语频率。这种方法避免了计算全局术语到索引映射的需要,这对于大型语料库来说可能是昂贵的,但是它遭受潜在的哈希冲突,其中不同的原始特征可能在散列之后变成相同的术语。为了减少冲突的可能性,我们可以增加目标特征维度,即哈希表的桶的数量。由于散列值的简单模数用于确定向量索引,因此建议使用2的幂作为要素维度,否则要素将不会均匀映射到向量索引。默认要素尺寸为218 = 262,144218 = 262,144。可选的二进制切换参数控制术语频率计数。设置为true时,所有非零频率计数都设置为1.这对于模拟二进制而非整数计数的离散概率模型特别有用。

CountVectorizer将文本文档转换为术语计数向量

IDF:IDF是一个Estimator,它适合数据集并生成IDFModel。 IDFModel采用特征向量(通常从HashingTF或CountVectorizer创建)并缩放每个特征。直观地说,它降低了在语料库中频繁出现的特征。

注意:spark.ml不提供文本分割工具.

在下面的代码段中,我们从一组句子开始。我们使用Tokenizer将每个句子分成单词。对于每个句子(单词包),我们使用HashingTF将句子散列为特征向量。我们使用IDF重新缩放特征向量;这通常会在使用文本作为功能时提高性能。然后我们的特征向量可以传递给学习算法。

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

val sentenceData = spark.createDataFrame(Seq(
  (0.0, "Hi I heard about Spark"),
  (0.0, "I wish Java could use case classes"),
  (1.0, "Logistic regression models are neat")
)).toDF("label", "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)

val hashingTF = new HashingTF()
  .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)

val featurizedData = hashingTF.transform(wordsData)
// alternatively, CountVectorizer can also be used to get term frequency vectors

val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)

val rescaledData = idfModel.transform(featurizedData)
rescaledData.select("label", "features").show()

5 训练分类模型

  • 代码
  • data.show(false)
  • println(neg.count(),data.count())//合并
  • result.show(false)
  • println(s"""accuracy is $accuracy""")

6 Spark机器学习实践系列

目录
相关文章
|
6月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
482 46
|
5月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
9月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
569 3
|
9月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
10月前
|
机器学习/深度学习 分布式计算 大数据
阿里云 EMR Serverless Spark 在微财机器学习场景下的应用
面对机器学习场景下的训练瓶颈,微财选择基于阿里云 EMR Serverless Spark 建立数据平台。通过 EMR Serverless Spark,微财突破了单机训练使用的数据规模瓶颈,大幅提升了训练效率,解决了存算分离架构下 Shuffle 稳定性和性能困扰,为智能风控等业务提供了强有力的技术支撑。
498 15
|
10月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
282 2
|
10月前
|
人工智能 自然语言处理 网络安全
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
10月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
849 2
|
10月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
705 3