基于Spark的机器学习实践 (九) - 聚类算法

简介: 0 相关源码1 k-平均算法(k-means clustering)概述1.1 回顾无监督学习◆ 分类、回归都属于监督学习◆ 无监督学习是不需要用户去指定标签的◆ 而我们看到的分类、回归算法都需要用户输入的训练数据集中给定一个个明确的y值1.2 k-平均算法与无监督学习◆ k-平均算法是无监督学习的一种◆ 它不需要人为指定一个因变量,即标签y ,而是由程序自己发现,给出类别y◆ 除此之外,无监督算法还有PCA,GMM等源于信号处理中的一种向量量化方法,现在则更多地作为一种聚类分析方法流行于数据挖掘领域。

0 相关源码

1 k-平均算法(k-means clustering)概述

1.1 回顾无监督学习

◆ 分类、回归都属于监督学习

◆ 无监督学习是不需要用户去指定标签的

◆ 而我们看到的分类、回归算法都需要用户输入的训练数据集中给定一个个明确的y值

1.2 k-平均算法与无监督学习

◆ k-平均算法是无监督学习的一种

◆ 它不需要人为指定一个因变量,即标签y ,而是由程序自己发现,给出类别y

◆ 除此之外,无监督算法还有PCA,GMM等

源于信号处理中的一种向量量化方法,现在则更多地作为一种聚类分析方法流行于数据挖掘领域。
k-平均聚类的目的是:把n 个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类,以之作为聚类的标准。

这个问题将归结为一个把数据空间划分为Voronoi cells的问题。

这个问题在计算上是NP困难的,不过存在高效的启发式算法

一般情况下,都使用效率比较高的启发式算法,它们能够快速收敛于一个局部最优解。
这些算法通常类似于通过迭代优化方法处理高斯混合分布的最大期望算法(EM算法)。
而且,它们都使用聚类中心来为数据建模;然而k-平均聚类倾向于在可比较的空间范围内寻找聚类,期望-最大化技术却允许聚类有不同的形状。

k-平均聚类与k-近邻之间没有任何关系(后者是另一流行的机器学习技术)。

2 k-平均算法原理

2.1 k-平均算法描述

◆ 设置需要聚类的类别个数K ,以及n个训练样本,随机初始化K个聚类中心

◆ 计算每个样本与聚类中心的距离,样本选择最近的聚类中心作为其
类别;重新选择聚类中心

◆ 迭代执行上一步,直到算法收敛

  • 算法图示

3 Kmeans算法实战

k-means是最常用的聚类算法之一,它将数据点聚类成预定义数量的聚类

MLlib实现包括一个名为kmeans ||的k-means ++方法的并行变体。
KMeans作为Estimator实现,并生成KMeansModel作为基本模型。


  • 代码
  • 结果

4 LDA算法概述

4.1 LDA算法介绍

◆ LDA即文档主题生成模型 ,该算法是一种无监督学习

◆ 将主题对应聚类中心,文档作为样本,则LDA也是一种聚类算法

◆ 该算法用来将多个文档划分为K个主题 ,与Kmeans类似

隐含狄利克雷分布(英语:Latent Dirichlet allocation,简称LDA),是一种[主题模型],它可以将文档集中每篇文档的主题按照[概率分布]的形式给出。

同时它是一种[无监督学习]算法,在训练时不需要手工标注的训练集,需要的仅仅是文档集以及指定主题的数量k即可。
此外LDA的另一个优点则是,对于每一个主题均可找出一些词语来描述它。
LDA首先由 David M. Blei、吴恩达迈克尔·I·乔丹 "迈克尔·乔丹 (学者)")于2003年提出,目前在[文本挖掘]领域包括文本主题识别、文本分类以及文本相似度计算方面都有应用。

5 LDA算法原理

5.1 LDA算法概述

◆ LDA是一种基于概率统计的生成算法

◆ 一种常用的主题模型,可以对文档主题进行聚类,同样也可以用在其他非文档的数据中

◆ LDA算法是通过找到词、文档与主题三者之间的统计学关系进行推断的

5.2 LDA算法的原理

◆ 文档的条件概率可以表示为

6 LDA算法实践

LDA实现为支持EMLDAOptimizer和OnlineLDAOptimizer的Estimator,并生成LDAModel作为基本模型。如果需要,专家用户可以将EMLDAOptimizer生成的LDAModel转换为DistributedLDAModel。

  • 代码
  • prediction.show()
  • topics.show(false)

Spark机器学习实践系列

目录
相关文章
|
机器学习/深度学习 分布式计算 算法
Spark MLlib中KMeans聚类算法的解析和应用
聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为、兴趣等来构建推荐系统。
Spark MLlib中KMeans聚类算法的解析和应用
|
机器学习/深度学习 分布式计算 算法
基于Spark的机器学习实践 (九) - 聚类算法
基于Spark的机器学习实践 (九) - 聚类算法
238 0
|
分布式计算 算法 大数据
【Spark Summit East 2017】基于Spark的可扩展的层次聚类算法
本讲义出自Chen Jin在Spark Summit East 2017上的演讲,数据挖掘的第一步工作就是进行聚类,聚类的目标是减少数据冗余或者定义数据类型,层次聚类,是一种被广泛使用的集群技术,它可以通过提出潜在的组织结构从而提供更丰富的表现方式。
3959 0
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
360 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
950 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
454 79
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
255 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
253 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
306 0