esproc vs python 1 增删改查

简介: 增加记录:在第二的位置增加一条记录esprocA4:添加一条记录(“:”前表示字段值,“:”后表示字段),其中2表示第二条记录的位置A5:计算运算时间(interval():计算时间间隔。@ms表示以毫秒为单位)python:import timeimport pandas as pd...
  1. 增加记录:在第二的位置增加一条记录
    esproc

1

A4:添加一条记录(“:”前表示字段值,“:”后表示字段),其中2表示第二条记录的位置

A5:计算运算时间(interval():计算时间间隔。@ms表示以毫秒为单位)

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="t")

values=[100,"wang","lao","Femal","CA","1999-01-01","2009-03-04","HR",3000]

line_dic={}

for i in range(len(data.columns)):

    line_dic[data.columns[i]]=values[i]

line = pd.DataFrame(line_dic,index=[1])

data = pd.concat([data.loc[:0],line,data.loc[1:]],ignore_index=True)

print(data)

e=time.time()

print(e-s)

用pd.concat([df1,df2,…,dfn))达到新增记录的目的,dataframe结构的记录是从0开始计数的,如df.loc[1:]表示切片取出第二条以后的所有记录

最后计算出运算耗时。

结果:

esproc
a
b
2

  1. 删除记录:删除第 2 条记录

3
A4:删除第2条记录

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="t")

data = data.drop(1)

print(data)

e=time.time()

print(e-s)

利用df.drop()函数删除某条记录

结果:

esproc
c1550128697309100
d
4
3.修改记录:第 5 条记录的 NAME 改为 aaa,SALARY 改为 1000
esproc
5
A4:修改第5条记录中的NAME字段的值为“aaa”,修改SALARY字段的值为1000

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="t")

data.loc[4,['NAME','SALARY']]=['aaa',1000]

print(data)

e=time.time()

print(e-s)

利用df.loc[]切片取出第5条记录的NAME,SALARY字段并赋值为‘aaa’和1000

结果:

esproc
e
f
6
4.查询行:查询第 2~10 条记录
esproc
7
A4:to(m,n):产生m~n的序列,我们用T表示序表,A表示序列。T(A)表示取出序列中包含值的记录,这里表示取出第2~10条记录

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="t")

data = data.loc[1:9]

print(data)

e=time.time()

print(e-s)

利用df.loc[]切片取出第2~10条记录

结果:

esproc
g
h
8
5.增加列:增加一个字段 Fullname
esproc
9
A4:derive()增加字段,这里表示用原来的NAME和SURNAME连接生成Fullname字段。

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="t")

data['Fullname'] = data['NAME']+data['SURNAME']

print(data)

e=time.time()

print(e-s)

取出NAME和SURNAME合并成Fullname

结果:

esproc
i
j
10
6.筛选字段:筛选出字段 NAME,SURNAME,STATE,GENDER
esproc
11
A4:T.new()生成新的序表。这里表示生成包含A3序表中NAME,SURNAME,STATE,GENDER这几个字段的新序表。

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="t")

data = data[['NAME','SURNAME','STATE','GENDER']]

print(data)

e=time.time()

print(e-s)

取出NAME,SURNAME,STATE,GENDER这几个字段复制给新的dataframe。

结果:

esproc
k
l
12
7.修改字段名:修改 EID 为 ID
esproc
13
A4:rename()修改字段名。这里表示将EID修改为ID

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="t")

data.rename(columns={'EID':'ID'},inplace=True)

print(data)

e=time.time()

print(e-s)

利用df.rename()函数修改字段名,将EID修改为ID。参数inplace控制是否修改原来的dataframe结构。

结果:

esproc

m
n
14
小结:我们通过对记录和字段的增、删、改、查这些基本的运算,用esproc和python按照相同的思路,对相同的数据进行同样的处理,在描述效率方面,两者相差并不大,都很方便而且容易上手。

相关文章
|
2月前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
1月前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
41 1
|
2月前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
34 4
|
2月前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
【10月更文挑战第10天】本文比较了Python中三个最受欢迎的Web框架:Django、Flask和Pyramid。Django以功能全面、文档完善著称,适合快速开发;Flask轻量灵活,易于上手;Pyramid介于两者之间,兼顾灵活性和安全性。选择框架时需考虑项目需求和个人偏好。
37 1
|
2月前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
【10月更文挑战第6天】本文比较了Python中三个最受欢迎的Web框架:Django、Flask和Pyramid。Django功能全面,适合快速开发;Flask灵活轻量,易于上手;Pyramid介于两者之间,兼顾灵活性和可扩展性。文章分析了各框架的优缺点,帮助开发者根据项目需求和个人偏好做出合适的选择。
37 4
|
2月前
|
关系型数据库 MySQL 数据库
Mysql学习笔记(四):Python与Mysql交互--实现增删改查
如何使用Python与MySQL数据库进行交互,实现增删改查等基本操作的教程。
67 1
|
2月前
|
C++ Python
Python Tricks--- Object Comparisons:“is” vs “==”
Python Tricks--- Object Comparisons:“is” vs “==”
20 1
|
4月前
|
存储 前端开发 数据库
基于python flask 的图书管理系统,有登录界面,实现简单增删改查,可以做课程设计使用
本文介绍了一个基于Python Flask框架的图书管理系统,该系统具备登录界面,并实现了基本的增删改查功能,适合作为课程设计使用。
基于python flask 的图书管理系统,有登录界面,实现简单增删改查,可以做课程设计使用
|
4月前
|
Shell 数据处理 C++
【震撼揭秘】Python正则VS Shell正则:一场跨越编程边界的史诗级对决!你绝不能错过的精彩较量,带你领略文本处理的极致魅力!
【8月更文挑战第19天】正则表达式是文本处理的强大工具,在Python与Shell中有广泛应用。两者虽语法各异,但仍共享许多基本元素,如`.`、`*`及`[]`等。Python通过`re`模块支持丰富的功能,如非捕获组及命名捕获组;而Shell则依赖`grep`、`sed`和`awk`等命令实现类似效果。尽管Python提供了更高级的特性和函数,Shell在处理文本文件方面仍有其独特优势。选择合适工具需根据具体需求和个人偏好决定。
40 1
|
4月前
|
前端开发 关系型数据库 MySQL
Python基于Django框架图书管理系统,Bootstrap框架UI,后台EasyUI框架UI,有登录,实现增删改查的富文本效果
本文介绍了一个使用Python Django框架开发的图书管理系统,该系统采用Bootstrap框架进行前端UI设计,EasyUI框架用于后台UI界面,集成了富文本编辑器,并实现了登录及增删改查功能。