Redis分片(分布式缓存)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 分片(partitioning)就是将你的数据拆分到多个 Redis 实例的过程,这样每个实例将只包含所有键的子集.1 分片何用Redis 的分片承担着两个主要目标:允许使用很多电脑的内存总和来支持更大的数据库。

分片(partitioning)就是将你的数据拆分到多个 Redis 实例的过程,这样每个实例将只包含所有键的子集.

1 分片何用

Redis 的分片承担着两个主要目标:

  • 允许使用很多电脑的内存总和来支持更大的数据库。没有分片,你就被局限于单机能支持的内存容量。
  • 允许伸缩计算能力到多核或多服务器,伸缩网络带宽到多服务器或多网络适配器。

2 分片基础

有很多不同的分片标准(criteria).
假想我们有 4 个 Redis 实例 R0,R1,R2,R3,还有很多表示用户的键,像 user:1,user:2,… 等等,我们能找到不同的方式来选择一个指定的键存储在哪个实例中。换句话说,有许多不同的办法来映射一个键到一个指定的 Redis 服务器。

最简单的执行分片的方式之一是范围分片(range partitioning),通过映射对象的范围到指定的 Redis 实例来完成分片。例如,我可以假设用户从 ID 0 到 ID 10000 进入实例 R0,用户从 ID 10001 到 ID 20000 进入实例 R1.

这套办法行得通,并且事实上在实践中被采用,然而,这有一个缺点,就是需要一个映射范围到实例的表格.
这张表需要管理,不同类型的对象都需要一个表,所以范围分片在 Redis 中常常并不可取,因为这要比其他分片可选方案低效得多。

一种范围分片的替代方案是哈希分片(hash partitioning).
这种模式适用于任何键,不需要键像 object_name: 这样的饿形式,就像这样简单

  • 使用一个哈希函数(例如,crc32 哈希函数) 将键名转换为一个数字。例如,如果键是 foobar,crc32(foobar)将会输出类似于 93024922 的东西。
  • 对这个数据进行取模运算,以将其转换为一个 0 到 3 之间的数字,这样这个数字就可以映射到我的 4 台 Redis 实例之一。93024922 模 4 等于 2,所以我知道我的键 foobar 应当存储到 R2 实例。注意:取模操作返回除法操作的余数,在许多编程语言总实现为%操作符。

有许多其他的方式可以分片,从这两个例子中你就可以知道了。一种哈希分片的高级形式称为一致性哈希(consistent hashing),被一些 Redis 客户端和代理实现。

3 分片实现(理论)

分片可由软件栈中的不同部分来承担。

  • 客户端分片(Client side partitioning)
    客户端直接选择正确的节点来写入和读取指定键,许多 Redis 客户端实现了客户端分片.
  • 代理协助分片(Proxy assisted partitioning)
    我们的客户端发送请求到一个可以理解 Redis 协议的代理上.而不是直接发送请求到 Redis 实例上.

代理会根据配置好的分片模式,来保证转发我们的请求到正确的 Redis 实例,并返回响应给客户端.
Redis 和 Memcached 的代理 Twemproxy 实现了代理协助的分片.

  • 查询路由(Query routing)
    你可以发送你的查询到一个随机实例,这个实例会保证转发你的查询到正确的节点.

Redis 集群在客户端的帮助下,实现了查询路由的一种混合形式 (请求不是直接从 Redis 实例转发到另一个,而是客户端收到重定向到正确的节点).

4 分片缺点

Redis 的一些特性与分片在一起时玩的不是很好

  • 涉及多个键的操作通常不支持。例如,你不能对映射在两个不同 Redis 实例上的键执行交集(事实上有办法做到,但不是直接这么干).
  • 涉及多个键的事务不能使用
  • 分片的粒度(granularity)是键,所以不能使用一个很大的键来分片数据集,例如一个很大的有序集合
  • 当使用了分片,数据处理变得更复杂,例如,你需要处理多个 RDB/AOF 文件,备份数据时你需要聚合多个实例和主机的持久化文件
  • 添加和删除容量也很复杂。例如,Redis 集群具有运行时动态添加和删除节点的能力来支持透明地再均衡数据,但是其他方式,像客户端分片和代理都不支持这个特性。但是,有一种称为预分片(Presharding)的技术在这一点上能帮上忙。

5 存储 OR 缓存

尽管无论是将 Redis 作为数据存储还是缓存,Redis 的分片概念上都是一样的,但是作为数据存储时有一个重要的局限。当 Redis 作为数据存储时,一个给定的键总是映射到相同的 Redis 实例。当 Redis 作为缓存时,如果一个节点不可用而使用另一个节点,这并不是一个什么大问题,按照我们的愿望来改变键和实例的映射来改进系统的可用性(就是系统回复我们查询的能力)。

一致性哈希实现常常能够在指定键的首选节点不可用时切换到其他节点。类似的,如果你添加一个新节点,部分数据就会开始被存储到这个新节点上。

这里的主要概念如下:

  • 如果 Redis 用作缓存,使用一致性哈希来来实现伸缩扩展(scaling up and down)是很容易的。
  • 如果 Redis 用作存储,使用固定的键到节点的映射,所以节点的数量必须固定不能改变。否则,当增删节点时,就需要一个支持再平衡节点间键的系统,当前只有 Redis 集群可以做到这一点.

6 预分片

我们已经知道分片存在的一个问题,除非我们使用 Redis 作为缓存,增加和删除节点是一件很棘手的事情,使用固定的键和实例映射要简单得多。

然而,数据存储的需求可能一直在变化。今天我可以接受 10 个 Redis 节点(实例),但是明天我可能就需要 50 个节点。

因为 Redis 只有相当少的内存占用且轻量级(一个空闲的实例只是用 1MB 内存),一个简单的解决办法是一开始就开启很多的实例。即使你一开始只有一台服务器,你也可以在第一天就决定生活在分布式的世界里,使用分片来运行多个 Redis 实例在一台服务器上。

你一开始就可以选择很多数量的实例。例如,32 或者 64 个实例能满足大多数的用户,并且为未来的增长提供足够的空间。

这样,当你的数据存储需要增长,你需要更多的 Redis 服务器,你要做的就是简单地将实例从一台服务器移动到另外一台。当你新添加了第一台服务器,你就需要把一半的 Redis 实例从第一台服务器搬到第二台,如此等等。

使用 Redis 复制,你就可以在很小或者根本不需要停机时间内完成移动数据:

  • 在你的新服务器上启动一个空实例。
  • 移动数据,配置新实例为源实例的从服务。
  • 停止你的客户端。
  • 更新被移动实例的服务器 IP 地址配置。
  • 向新服务器上的从节点发送 SLAVEOF NO ONE 命令。
  • 以新的更新配置启动你的客户端。
  • 最后关闭掉旧服务器上不再使用的实例。

7 分片实现(实践)

到目前为止,我们从理论上讨论了 Redis 分片,但是实践情况如何呢?你应该使用什么系统呢?

7.1 Redis 集群

Redis 集群是自动分片和高可用的首选方式.

一旦 Redis 集群可用,以及支持 Redis 集群的客户端可用,Redis 集群将会成为 Redis 分片的事实标准。

Redis 集群是查询路由和客户端分片的混合模式。

7.2 Twemproxy

Twemproxy 是 Twitter 开发的一个支持 Memcached ASCII 和 Redis 协议的代理。它是单线程的,由 C 语言编写,运行非常的快。基于 Apache 2.0 许可的开源项目。

Twemproxy 支持自动在多个 Redis 实例间分片,如果节点不可用时,还有可选的节点排除支持(这会改变键和实例的映射,所以你应该只在将 Redis 作为缓存是才使用这个特性)。

这并不是单点故障(single point of failure),因为你可以启动多个代理,并且让你的客户端连接到第一个接受连接的代理。

从根本上说,Twemproxy 是介于客户端和 Redis 实例之间的中间层,这就可以在最下的额外复杂性下可靠地处理我们的分片。这是当前建议的处理 Redis 分片的方式.

7.3 支持一致性哈希的客户端

Twemproxy 之外的可选方案,是使用实现了客户端分片的客户端,通过一致性哈希或者别的类似算法。有多个支持一致性哈希的 Redis 客户端,例如 Redis-rb 和 Predis。

请查看完整的 Redis 客户端列表,看看是不是有支持你的编程语言的,并实现了一致性哈希的成熟客户端。

联系我

gayhub

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
26天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
27天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
27天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
54 16
|
1月前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
193 22
|
20天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
36 5
|
1月前
|
缓存 NoSQL 中间件
redis高并发缓存中间件总结!
本文档详细介绍了高并发缓存中间件Redis的原理、高级操作及其在电商架构中的应用。通过阿里云的角度,分析了Redis与架构的关系,并展示了无Redis和使用Redis缓存的架构图。文档还涵盖了Redis的基本特性、应用场景、安装部署步骤、配置文件详解、启动和关闭方法、systemctl管理脚本的生成以及日志警告处理等内容。适合初学者和有一定经验的技术人员参考学习。
157 7
|
1月前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
64 10
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透的检测方法与分析
【10月更文挑战第23天】通过以上对 Redis 缓存穿透检测方法的深入探讨,我们对如何及时发现和处理这一问题有了更全面的认识。在实际应用中,我们需要综合运用多种检测手段,并结合业务场景和实际情况进行分析,以确保能够准确、及时地检测到缓存穿透现象,并采取有效的措施加以解决。同时,要不断优化和改进检测方法,提高检测的准确性和效率,为系统的稳定运行提供有力保障。
50 5
|
1月前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透及其应对策略
【10月更文挑战第23天】通过以上对 Redis 缓存穿透的详细阐述,我们对这一问题有了更深入的理解。在实际应用中,我们需要根据具体情况综合运用多种方法来解决缓存穿透问题,以保障系统的稳定运行和高效性能。同时,要不断关注技术的发展和变化,及时调整策略,以应对不断出现的新挑战。
48 4