云HBase Spark分析引擎对接云数据库POLARDB

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: HBase Spark分析引擎是云数据库HBase版提供的分析引擎,基于Spark提供的复杂分析、流式处理、机器学习的能力。Spark分析引擎可以对接阿里云的各种数据源,例如:云HBase数据、MongoDB、Phoenix等,同时也支持对接POLARDB数据库。

HBase Spark分析引擎云数据库HBase版提供的分析引擎,基于Spark提供的复杂分析、流式处理、机器学习的能力。Spark分析引擎可以对接阿里云的多种数据源,例如:云HBase数据库、MongoDB、Phoenix等,同时也支持对接云数据库POLARDB。POLARDB是阿里云自研的下一代关系型云数据库,100%兼容MySQL,性能最高是MySQL的6倍。本文主要介绍HBase Spark分析引擎如何对接云数据库POLARDB。

场景介绍

POLARDB中经常会存储一些维度表信息,例如:用户维度表信息,包含用户的ID,姓名,地址等信息。此类数据的特点是数据量小,不经常改变。
Spark 中经常会存在一些海量事实表数据用于数据的分析,例如用户的通话信息、交易信息等。此类数据的特点是数据量大、增量更新。用户需要在这类数据中统计、分析挖掘有价值的内容。
例如:用户事实表数据一般包含用户的ID信息,在Spark侧对事实表统计分析时,对分析的结果需要补齐用户的其他信息,例如姓名、地址等。
这时就可以通过Spark分析引擎直接和POLARDB的数据表做关联查询和统计分析,而不用担心搬迁POLARDB的数据,以及搬迁数据带来的数据同步问题和额外的维护工作量。
下面内容介绍在Spark分析引擎中如何对接云数据库POLARDB。

在Spark分析引擎中创建表

本文中的SQL样例可以运行在Spark分析引擎的SQL服务ThriftServer。
在Spark分析引擎中创建关联POLARDB表的语法如下:

create table jdbc_polordb
using org.apache.spark.sql.jdbc
options (
  driver 'com.mysql.jdbc.Driver',
  url 'jdbc:mysql://pc-xxx.rwlb.rds.aliyuncs.com:3306',
  dbtable 'testdb.test_table',
  user 'testuser',
  password 'xxx'
)

样例使用的是Spark的JDBC DataSource API。每个参数意义如下:
jdbc:mysql://pc-xxx.rwlb.rds.aliyuncs.com:3306:POLARDB的数据库地址,从POLARDB集群中获取,可以是集群地址,主地址或者SQL加速地址,对应下图中POLARDB的连接地址:
undefined
testdb.test_table:testdb是POLARDB中创建的数据库名称,test_table为创建的表名称。
userpassword分别对应登陆数据库的用户名和密码。

在Spark分析引擎中操作表

在Spark分析引擎中创建表后,可以直接在Spark分析引擎中操作POLARDB表。表的操作常用的有:查询表、插入数据、删除表。
1、查询样例:

select * from jdbc_polordb limit 5;
+-----+---------+--+
| id  |  name   |
+-----+---------+--+
| 9   | name9   |
| 15  | name15  |
| 9   | name99  |
| 28  | name28  |
| 15  | name15  |
+-----+---------+--+
select * from jdbc_polordb where id >= 96;
+------+-----------+--+
|  id  |   name    |
+------+-----------+--+
| 96   | name96    |
| 99   | name99    |
| 98   | name98    |
| 99   | name99    |
| 97   | name97    |
| 100  | name100   |
| 200  | testdata  |
+------+-----------+--+

2、插入数据样例:

insert into jdbc_polordb values(200, 'testdata');
+---------+--+
| Result  |
+---------+--+
+---------+--+
select * from jdbc_polordb where id=200;
+------+-----------+--+
|  id  |   name    |
+------+-----------+--+
| 200  | testdata  |
+------+-----------+--+

3、与其他表join样例:

select j.id, j.name from jdbc_polordb j join test_parquet t on j.id = t.id;
+-----+--------+--+
| id  |  name  |
+-----+--------+--+
| 1   | name1  |
| 3   | name3  |
| 5   | name5  |
+-----+--------+--+

4、 删除表样例(Spark侧删除表不会删除POLARDB中的表):

drop table jdbc_polordb;
+---------+--+
| Result  |
+---------+--+
+---------+--+

Spark分析引擎查询POLARDB性能优化

Spark分析引擎中查询POLARDB表性能方面提供了如下的优化能力:
1、 列值裁剪
根据用户的SQL语句在POLARDB中获取需要字段的数据。例如,POLARDB中的表test_table有四个字段,col1、col2、col3、col4。 Spark中的查询语句为:

select col1, col3 from jdbc_polordb

则Spark分析引擎只会获取表test_table中col1和col3两个字段对应的数据,减少数据量的获取。

2、 过滤条件下推
Spark分析引擎支持常用的过滤条件下推,例如:=,>,>=,<,<=,is null, is not null,like xx%, like %xx, like %xx%,in,not。查询SQL如:

select * from jdbc_polordb where id >= 96;
select * from jdbc_polordb where id=200;

Spark分析引擎会把过滤条件id=200,id>=96下推到POLARDB,减少数据量的获取,提升查询性能。

3、分区并行读取
在Spark分析引擎中创建JDBC表时可以指定分区,查询会按照分区字段和分区数并发查询。语法如下:

create table jdbc_polordb
using org.apache.spark.sql.jdbc
options (
 driver 'com.mysql.jdbc.Driver',
 url 'jdbc:mysql://pc-xxx.rwlb.rds.aliyuncs.com:3306',
 dbtable 'testdb.test_table',
 user 'testuser',
 password 'xxx',
 partitionColumn 'id',
 lowerBound '20',
 upperBound '80',
 numPartitions '5'
)

partitionColumn:是需要分区的字段名称,对应POLARDB中表的字段;
lowerBound:为对应字段的下界值;
upperBound:为对应字段的上界值;
numPartitions:为分区数。
在此基础上执行select * from jdbc_polordb,Spark分析引擎会下发5个并行的Job查询POLARDB数据库。下图为Spark分析引擎的并行Job:
ss

总结

Spark分析引擎作为大数据计算框架可以与云数据库POLARDB很容易结合在一起,在Spark分析引擎中非常便捷地关联、分析POLARDB的数据。本文简单介绍HBase Spark分析引擎与云数据库POLARDB结合的常用操作。更多内容欢迎大家使用HBase Spark分析引擎云数据库POLARDB

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
20天前
|
关系型数据库 MySQL 分布式数据库
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶,邀请好友完成更有机会获得​小米Watch S3、小米体重称​等诸多好礼!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
|
2月前
|
关系型数据库 MySQL Serverless
探索PolarDB MySQL版:Serverless数据库的灵活性与性能
本文介绍了个人开发者对阿里云PolarDB MySQL版,特别是其Serverless特性的详细评测体验。评测涵盖了产品初体验、性能观测、Serverless特性深度评测及成本效益分析等方面。尽管试用过程中遇到一些小问题,但总体而言,PolarDB MySQL版表现出色,提供了高性能、高可用性和灵活的资源管理,是个人开发者和企业用户的优秀选择。
|
2天前
|
关系型数据库 分布式数据库 数据库
锦鲤附体 | PolarDB数据库创新设计赛,好礼不停!
锦鲤附体 | PolarDB数据库创新设计赛,好礼不停!
|
28天前
|
关系型数据库 分布式数据库 数据库
PolarDB 开源:推动数据库技术新变革
在数字化时代,数据成为核心资产,数据库的性能和可靠性至关重要。阿里云的PolarDB作为新一代云原生数据库,凭借卓越性能和创新技术脱颖而出。其开源不仅让开发者深入了解内部架构,还促进了数据库生态共建,提升了稳定性与可靠性。PolarDB采用云原生架构,支持快速弹性扩展和高并发访问,具备强大的事务处理能力及数据一致性保证,并且与多种应用无缝兼容。开源PolarDB为国内数据库产业注入新活力,打破国外垄断,推动国产数据库崛起,降低企业成本与风险。未来,PolarDB将在生态建设中持续壮大,助力企业数字化转型。
74 2
|
2月前
|
关系型数据库 分布式数据库 数据库
来!跟通义灵码一起参加PolarDB 数据库创新设计赛,突破传统,探索人机协作
无论你是数据库新手,还是技术大咖,通义灵码邀请你参加2024 年全国大学生计算机系统能力大赛 PolarDB 数据库创新设计赛(天池杯),新参赛模式启动,挑战极限!
101 11
|
2月前
|
关系型数据库 MySQL 分布式数据库
PolarDB MySQL数据库场景体验与测评
本文介绍如何在PolarDB上部署数据库,包括登录控制台、配置账号与数据库管理、执行SQL查询及调整Serverless配置等内容。通过创建测试表和数据操作演示了基本数据库管理功能,并展示了如何设置资源弹性扩缩、监控及备份数据。此外,还提供了关于节点切换、压测、加速复杂SQL查询、弹性并行查询及高可用性的详细场景体验说明,全方位展示了PolarDB的强大功能。
|
2月前
|
存储 关系型数据库 分布式数据库
揭秘PolarDB:中国云原生数据库的超级英雄,如何颠覆传统数据存储?
在数字化时代,数据成为企业的核心资产,而云原生数据库则是推动企业转型的关键。PolarDB凭借其先进的存储计算分离架构,在性能、可靠性和易用性方面脱颖而出,成为国内领先的选择。它支持多种数据库引擎,提供多副本存储机制,并采用按量付费模式,有效降低管理和成本压力,助力企业实现高效、可靠的数字化转型。
62 1
|
2月前
|
关系型数据库 分布式数据库 数据库
报名啦|PolarDB数据库创新设计赛(天池杯)等你来战
2024年全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)已启动报名,面向全国高校全日制本专科学生。大赛由多家机构联合主办,旨在培养数据库领域人才,促进产学研合作,设有丰厚奖金与奖项。报名截至10月7日,决赛将于12月13日举行。更多详情及报名请访问大赛官网。
|
2月前
|
关系型数据库 分布式数据库 数据库
报名啦|PolarDB数据库创新设计赛(天池杯)等你来战
2024年全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)已启动报名,面向全国高校全日制本专科学生。大赛由多家机构联合主办,旨在培养数据库领域人才,促进产学研合作,设有丰厚奖金与奖项。报名截至10月7日,决赛将于12月13日举行。更多详情及报名请访问大赛官网。
|
2月前
|
SQL 关系型数据库 分布式数据库
PolarDB Proxy配置与优化:提升数据库访问效率
【9月更文挑战第6天】PolarDB是阿里云推出的高性能分布式关系型数据库,PolarDB Proxy作为其关键组件,位于客户端与PolarDB集群间,负责SQL请求的解析与转发,并支持连接池管理、SQL过滤及路由规则等功能。本文详细介绍了PolarDB Proxy的配置方法,包括连接池、负载均衡和SQL过滤设置,并探讨了监控调优、缓存及网络优化策略,以帮助提升数据库访问效率。
45 1

热门文章

最新文章