Tensorflow源码解析7 -- TensorFlow分布式运行时

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: # 1 概述 TensorFlow架构设计精巧,在后端运行时这一层,除了提供本地运行时外,还提供了分布式运行时。通过分布式训练,在多台机器上并行执行,大大提高了训练速度。前端用户通过session.run()启动系统执行时,target默认为空字符串"",对应的是本地运行模式。若target以"grpc://"开头,则对应的是分布式运行模式,target指定了要连接的TensorFlow执行

1 概述

TensorFlow架构设计精巧,在后端运行时这一层,除了提供本地运行时外,还提供了分布式运行时。通过分布式训练,在多台机器上并行执行,大大提高了训练速度。前端用户通过session.run()启动系统执行时,target默认为空字符串"",对应的是本地运行模式。若target以"grpc://"开头,则对应的是分布式运行模式,target指定了要连接的TensorFlow执行引擎。

分布式运行时同样分为client master和worker,只是三者不在同一进程内。分布式运行时同样是围绕计算图Graph来进行的,流程也与本地运行时几乎相同。client负责图的构造,并传递给master。master接收后,启动图的剪枝和分裂,将分裂后的子图发送给多个worker进程。worker进程负责执行计算子图,它会先按照自己所在机器包含的设备,先按照设备进行子图的二次分裂,然后在每个设备上进行子图执行。所有设备执行完毕后,从计算图的终止节点sink中取出数据。

本地运行时通过DirectSession同时管理client master和worker,而分布式运行时则不同。client对应GrpcSession,master对应MasterSession,worker对应WorkerSession。三者使用同一个句柄session_handle进行协同工作。

2 数据交换

和本地运行时类似,分布式运行时也存在跨设备的数据依赖。对于跨设备的数据边,将其分裂,在发送方插入send节点,接收方插入recv节点。如果二者跨进程通信(比如两台不同的服务器),则通过GrpcRemoteRendezvous进行数据交换。如果二者是进程内通信(比如同一台服务器的CPU0和CPU1),则通过IntraProcessRendezvous进行数据交换。上节讲过的本地运行时在运行前,就创建了一个IntraProcessRendezvous对象。

3 分布式集群结构

TensorFlow为分布式运行时,设计了一个精巧的结构。共分为三级。

  1. 集群cluster,可包含多台服务器,通过ClusterSpec对象描述。它包含多个job,一个job又包含多个Task。一个Task对应一个server。
  2. Job。将目的相同的Task划归为一个job,使用job_id唯一标示。一般存在两种job

    1. ps:数据存储,负责存储和更新模型的参数,比如w和b。比较适合CPU
    2. worker:数据计算,负责train和inference时的数据计算工作。比较适合GPU

一般ps将数据发送给worker,待worker运算完毕后再返回给ps,ps再进行数据更新。

  1. Task。Task是提供服务的最小单位,它一般单独在一个进程内,通过job_id:task_index唯一标示。一个Task对应一个server,提供MasterService和WorkerService两种服务。

下面是一个集群配置的例子。

tf.train.ClusterSpec({
    "worker": [
        "worker0:1111", # /job:worker/task:0
        "worker1:2222", # /job:worker/task:1
        "worker2:3333" # /job:worker/task:2
    ],
    "ps": [
        "ps0:1111", # /job:ps/task:0
        "ps1:2222" # /job:ps/task:1
]})

这个集群cluster内包含2个job,一个ps和一个worker。ps又包含2个task,worker则包含3个task,共计5个task。

目录
相关文章
|
4月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
141 2
|
5天前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
|
3月前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
256 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
2月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
62 7
|
3月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
3月前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
3月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
3月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
自然语言处理 数据处理 索引
mindspeed-llm源码解析(一)preprocess_data
mindspeed-llm是昇腾模型套件代码仓,原来叫"modelLink"。这篇文章带大家阅读一下数据处理脚本preprocess_data.py(基于1.0.0分支),数据处理是模型训练的第一步,经常会用到。
62 0
|
3月前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
205 5

热门文章

最新文章