Elasticsearch中的DocValues

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 简单的说,Elasticsearch通过反向索引做搜索,通过DocValues列式存储做分析,将搜索和分析的场景统一到了一个分布式系统中,还是很有搞头的。

Elasticsearch最近一段时间非常火,以致于背后的公司都改名为Elastic了,因为Elasticsearch已经不仅限于搜索,反而更多的用在大数据分析场景,所以在公司品牌上开始“去Search化”。这得益于其强大的支持聚合分析的Query DSL,虽然这个DSL的语法有点复杂,但底层的技术确实牛B,分布式的快速分析引擎,Elasticsearch已经占有一席之地。


大家知道,搜索引擎的基本数据结构是反向索引,也就是为每个关键词建立了到文档的映射,然后所有的关键词是一个有序列表。搜索的时候,只要先从有序列表中匹配到关键词,就能搜索到包含该关键词的所有文档,反向索引的数据结构对于关键词搜索的场景是非常高效的。


但聚合分析和搜索有很大的不同。典型的场景,比如计算某个文档中每个关键词的出现次数,反向索引就无能为力了,需要先扫描整个关键词映射表,才能找到该文档包含的所有关键词,然后再进行聚合统计(这个例子其实不太准确,因为Lucene在反向索引中冗余了词频的信息,用于计算搜索相关度),也就是要对整个反向索引做全扫描,在数据量大的时候,性能当然好不到哪里去。


所以,Elasticsearch为聚合计算引入了名为fielddata的数据结构,其实就是根据反向索引再次反向出来的一个正向索引,也就是文档到关键词的映射。因为聚合计算也好,排序也好,通常是针对某些列的,实际上生成的是文档到field的多个列式索引,所以叫做fielddata。这样对文档内的关键词做聚合计算的时候,就只要从fielddata中根据文档ID查找就好。而且,fielddata是保存在内存中的,好处是不占用存储,坏处么,当然上内存不够用啦。而且这个内存是从JVM的Heap上分配的,因为JVM对于大内存的垃圾收集的影响,不能不说对稳定性有很大的挑战,数据量大的时候,时不时的OutOfMemory也不是闹着玩的。因为内存是有限的,所以不可能预先为所有的字段都建立fielddata,只能是由具体的搜索需求来触发。如果是未命中的搜索,还需要先在内存中建立fielddata,这会影响到响应时间。


fielddata的问题在于内存的有限性和JVM对于大内存的垃圾收集对系统带来的稳定性挑战。所以后来又引入了一个新的机制,就是DocValues,从数据结构上来说,它和fielddata是一样的按列的正向索引,但是实现方式不同,DocValues是持久化存储在文件中,并且是预先构建的,也就是数据进入到Elasticsearch时,就会同时生成反向索引和DocValues,这会消耗额外的存储空间,但对于JVM的内存需求会大幅度减少,剩余的内存可以留给操作系统的文件缓存使用。加上DocValues是预先构建的,查询时也免去了不命中时构建fielddata的时间,所以总体来看,DocValues只比内存fielddata慢大概10~25%,稳定性则有了大幅度提升。从Elasticsearch2.0开始,除了分词过的字符串字段,其他字段已经默认生成DocValues了(可以在索引的Mapping中通过doc_values布尔值来设置)。


简单的说,Elasticsearch通过反向索引做搜索,通过DocValues列式存储做分析,将搜索和分析的场景统一到了通一个分布式系统中,还是很有搞头的。不过分析不仅仅是聚合,这也是Elasticsearch还需要继续努力的方向,目前通过Elasticsearch-Hadoop项目,可以将Elasticsearch的搜索结果做为Spark的RDD,利用Spark做更深度的分析。未来如果分布式计算这一层能够和Spark这样的计算框架再进一步做深度的融合,恐怕有可能成为大数据领域内的另外一个大杀器。


袋鼠云正在基于Elasticsearch+Spark来做一些有意思的大数据产品,欢迎对Elasticsearch和Spark有深入研究的大牛们加入或者交流。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
8月前
|
自然语言处理 网络架构 索引
Elasticsearch7.1之cerebro使用(一)
Elasticsearch7.1之cerebro使用(一)
96 1
|
5月前
|
消息中间件 数据采集 Kafka
elasticsearch系列(二)
elasticsearch系列(二)
|
自然语言处理 索引
Elasticsearch(三)
Elasticsearch(三)
76 0
|
存储 监控 搜索推荐
【Elasticsearch】初识elasticsearch(上)
【Elasticsearch】初识elasticsearch
85 0
|
存储 数据可视化 Java
Elasticsearch
Elasticsearch
130 0
一起来学ElasticSearch(十)
前言 目前正在出一个Es专题系列教程, 篇幅会较多, 喜欢的话,给个关注❤️ ~ 承接上文,上节给大家讲的es聚合还有一点内容,本节给大家更完~ 本文偏实战一些,为了方便演示,本节示例沿用上节索引,好了, 废话不多说直接开整吧~ 聚合排序 我们如何在聚合结果中进行自定义字段排序呢?
|
存储 自然语言处理 关系型数据库
ElasticSearch
ElasticSearch 什么? 基于Luncene的搜索服务器。用Java开发的,主要解决mysql性能低、功能有限的问题。 mysql是关系型数据库 like ‘%小区%’ 如果使用模糊查询,左边有通配符,不会走索引,会全表扫描,性能低。
137 1
|
存储 JSON 缓存
Elasticsearch 系列之一 —— 初识
Elasticsearch 故名思议,Elastic Search 一个分布式搜索中间件。据说是创始人给妻子开发搜索食谱的应用时,顺手做的中间件。果然,爱情的力量是伟大的,否则也不会有至今广受使用的 Elasticsearch 了。 ​ 分布式、高性能、近实时是 Elasticsearch 的特点。它可以对几乎所有类型的数据(基本值类型、地理空间、IP 等)进行搜索,这依赖于针对不同的类型建立合适的索引结构,后面的系列我们将详细分析索引部分,本次我们分析 Elasticsearch 的系统概念与读写流程。
Elasticsearch 系列之一 —— 初识