日志服务IPython/Jupyter扩展实战:下载数据为Excel文件

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
简介: 想要将日志服务的日志下载并保存为Excel或者CSV格式,并且自动处理字段不一致的情况的话,该怎么办?通过使用日志服务IPython/Jupyter扩展,轻松做到这点。

问题

日志服务的数据并不要求统一格式,每条日志可以有不同的关键字集合,例如:

{"city": "123", "province": "vvv"}
{"city": "shanghai", "pop": "2000"}
{"name": "xiao ming", "home": "shanghai"}

因此一般使用日志服务的CLI下载的命令get_log_all或者pull_log_dump时,格式都是单行JSON格式以保证灵活性。

但是大部分情况下,一个日志库的所有日志的关键字集合总体是稳定的;另一方面,Excel格式(或者更简单的CSV格式)相对JSON更加商业应用和人类操作友好一些。

如果期望下载下来时是Excel或者CSV格式,并且自动处理字段不一致的情况的话,该怎么办?

本文通过使用日志服务IPython/Jupyter扩展,轻松做到这点。

前提

安装日志服务扩展

首先,参考文章日志服务IPythonIPython/Jupyter扩展完成安装(IPython Shell、IPython/Jupyter Notebook或者Jupyter Lab均可)

安装Excel相关组件

在IPython所在环境中安装Excel读写的相关组件:

pip install openpyxl xlrd xlwt XlsxWriter
  • openpyxl - 用于Excel 2010 xlsx/xlsm文件的读写
  • xlrd - 读取Exce (xls格式)
  • xlwt - 写Excel (xls格式)
  • XlsxWriter - 写Excel (xlsx)文件

配置

使用%manage_log配置好链接日志服务的相关入口、秘钥、项目和日志库等。具体参考这里

场景

1. 将结果保存到Excel中

通过查询命令%%log查询得到Pandas Dataframe,然后调用to_excel即可。

样例:

%%log -1day ~ now
* | select date_format(date_trunc('hour', __time__), '%H:%i') as dt,
        count(1)%100 as pv,
        round(sum(if(status < 400, 1, 0))*100.0/count(1), 1) AS ratio
        group by date_trunc('hour', __time__)
        order by dt limit 1000
df1 = log_df
df1.to_excel('output.xlsx')

2. 将结果保存到Excel多个Sheet中

通过%log%%log获得多个数据存在不同的Dataframe中后,如下样例操作:

import pandas as pd
writer = pd.ExcelWriter('output2.xlsx') 

df1.to_excel(writer, sheet_name='data1')
df2.to_excel(writer, sheet_name='data2')

writer.save()

3. 定制Excel细节格式

Pandas默认使用Xlwt模块xls文件、使用Openpyxl模块xlsx文件。而使用XlsxWriterxlsx功能更加全面灵活,但需要如下配置。

例如上面例子中的ExcelWriter构造时,增加参数即可:

writer = pd.ExcelWriter('output2.xlsx', engine='xlsxwriter') 

可以定制特定列的格式、样式、甚至直接画Excel图表。具体推荐参考这篇文章

4. 其他格式

Pandas DataFrame还可以保存其他格式,例如csvhtml等,可以进一步参考这里

进一步参考

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
2月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
166 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
2月前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录
|
2月前
|
Java Maven Spring
超实用的SpringAOP实战之日志记录
【11月更文挑战第11天】本文介绍了如何使用 Spring AOP 实现日志记录功能。首先概述了日志记录的重要性及 Spring AOP 的优势,然后详细讲解了搭建 Spring AOP 环境、定义日志切面、优化日志内容和格式的方法,最后通过测试验证日志记录功能的准确性和完整性。通过这些步骤,可以有效提升系统的可维护性和可追踪性。
|
3月前
|
Java 程序员 应用服务中间件
「测试线排查的一些经验-中篇」&& 调试日志实战
「测试线排查的一些经验-中篇」&& 调试日志实战
34 1
「测试线排查的一些经验-中篇」&& 调试日志实战
|
2月前
|
SQL Oracle 关系型数据库
【赵渝强老师】Oracle的联机重做日志文件与数据写入过程
在Oracle数据库中,联机重做日志文件记录了数据库的变化,用于实例恢复。每个数据库有多组联机重做日志,每组建议至少有两个成员。通过SQL语句可查看日志文件信息。视频讲解和示意图进一步解释了这一过程。
|
3月前
|
数据采集 机器学习/深度学习 存储
使用 Python 清洗日志数据
使用 Python 清洗日志数据
53 2
|
4月前
|
SQL 人工智能 运维
在阿里云日志服务轻松落地您的AI模型服务——让您的数据更容易产生洞见和实现价值
您有大量的数据,数据的存储和管理消耗您大量的成本,您知道这些数据隐藏着巨大的价值,但是您总觉得还没有把数据的价值变现出来,对吗?来吧,我们用一系列的案例帮您轻松落地AI模型服务,实现数据价值的变现......
268 3
|
4月前
|
SQL 安全 数据库
基于SQL Server事务日志的数据库恢复技术及实战代码详解
基于事务日志的数据库恢复技术是SQL Server中一个非常强大的功能,它能够帮助数据库管理员在数据丢失或损坏的情况下,有效地恢复数据。通过定期备份数据库和事务日志,并在需要时按照正确的步骤恢复,可以最大限度地减少数据丢失的风险。需要注意的是,恢复数据是一个需要谨慎操作的过程,建议在执行恢复操作之前,详细了解相关的操作步骤和注意事项,以确保数据的安全和完整。
198 0
|
5月前
|
数据库 Java 监控
Struts 2 日志管理化身神秘魔法师,洞察应用运行乾坤,演绎奇幻篇章!
【8月更文挑战第31天】在软件开发中,了解应用运行状况至关重要。日志管理作为 Struts 2 应用的关键组件,记录着每个动作和决策,如同监控摄像头,帮助我们迅速定位问题、分析性能和使用情况,为优化提供依据。Struts 2 支持多种日志框架(如 Log4j、Logback),便于配置日志级别、格式和输出位置。通过在 Action 类中添加日志记录,我们能在开发过程中获取详细信息,及时发现并解决问题。合理配置日志不仅有助于调试,还能分析用户行为,提升应用性能和稳定性。
67 0
|
2月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
551 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板

相关产品

  • 日志服务