Serverless理念的弄潮儿—— 阿里云数加平台助力大数据普惠

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 阿里云坚持将计算能力变成像水电煤一样的公共服务,提供给大众,而非卖服务器,这跟Serverless 架构理念一致。在本文中,班输从数据平台简介、大数据应用特点、数加平台Serverless架构解析和典型案例四部分讲述了数据平台如何利用Serverless 的架构来降低大数据应用的门槛,实现数据普惠。

免费开通大数据服务:https://www.aliyun.com/product/odps

阿里云坚持将计算能力变成像水电煤一样的公共服务,提供给大众,而非单单而不是卖服务器给客户,这跟今日流行的Serverless 架构理念是一致的。Serverless 理念在数加平台得到了很好的体现,数加平台今天已经可以提供很多业务场景化的计算服务,比如推荐引擎,规则引擎,以及各种人工智能的服务,助力企业在DT时代更敏捷、更智能、更具洞察力。在本文中,班输从数据平台简介、大数据应用特点、数加平台Serverless架构解析和典型案例四部分讲述了数据平台如何利用Serverless 的架构来降低大数据应用的门槛,实现数据普惠。

以下内容根据分享视频和PPT整理。


数加平台简介

ab29854ca8795c7ac40a99d63c01221dc2243bab

数加是阿里云大数据的品牌名,旗下包含一系列的大数据产品及服务,其目的是为大众提供一站式数据开发、分析、应用平台。开发者使用数加平台可以快速构建数据支撑的应用。数加平台的产品具体分为两大部分:基础平台和数据应用。前者包括大数据产品主要有数据开发、机器学习、大数据计算、分析型数据库、流计算等;后者主要包括推荐引擎、人脸识别、数据可视化DataV等应用。

在数加平台,各种计算服务开箱即用,用户不必关心大数据集群的搭建、配置和运维工作,仅需简单的几步操作,用户就可以在数加平台中上传数据、分析数据并得到分析结果。用户不必关心数据规模增长带来的存储困难、运算时间延长等烦恼,数加平台根据用户的数据规模自动扩展大数据集群的存储和计算能力,使用户专心于数据分析和挖掘,最大化发挥数据的价值。

大数据应用的特点

大数据的价值需要借助一些具体的应用模式和场景才能得到集中体现。相比于传统应用,大数据应用具有以下特点:

  1. 流程长,业务逻辑复杂:从数据的采集、存储、分析、挖掘到最终提供数据服务,需要把多种数据源融合入,关联分析,复杂度大大增加。
  2. 场景多样化,不确定性强:大数据相关的应用要产生价值,需要和业务紧密结合。现实中很多场景都具有探索性质,并且要随着业务变化和反馈持续地调整,灵活性要求很高。
  3. 技术门槛高:在大数据应用中存在多种技术引擎,如离线、在线、流式引擎,以及多种计算模型,如SQL、MR、机器学习,很多场景下需要这些工具组合使用。

上述特点使得从头搭建一个完成的大数据应用平台的难度成倍增加,大型公司内需要专门的团队应对开发、维护等工作;对于小型公司几乎是不可能完成的任务。那么如何把企业内有限的数据科学家从基础设施构建和运维的复杂性中解放出来呢?数加平台给出的答案是:Serverless架构。Serverless架构以服务的形式来提供计算能力而不是以服务器形式,让开发者在构建应用的过程中不用过多考虑基础设施的问题。这个理念在数加平台中得到了很好的体现。

数加平台Serverless架构解析

05eaaf1ec21f599eb7a1f4c3df7b63341abfafe6

如上图所示,数加平台的输入是大量的数据,然后将数据进行融合,通过特定的计算或算法将其变成对业务有价值的服务,输出给用户;数加平台从底层将整个数据应用链路打通,提供了从数据采集、存储、处理等模块;用户需要做的就是开发、配置业务相关的处理逻辑、业务规则和确定所需算法;此外,数据平台还提供了服务的编排、管理、运维等功能,真正地将开发者从底层技术实现和运维管理以及资源调度方面解放出来,将精力集中于数据价值实现上,完美地诠释了Serverless的架构理念。

下面以数加平台最重要的大数据产品MaxCompute 为例,深入讲解。

 

 

1ab0d91bf646dfe7bd5a1763e02711d87f18ba9c

MaxCompute的服务化架构图如上所示,它提供的是大数据计算能力,而不是计算的工具或环境;它向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更快速地解决用户海量数据计算问题,有效降低企业成本,并保障数据安全;MaxCompute主要服务于批量结构化数据的存储和计算,可以提供海量数据仓库的解决方案以及针对大数据的分析建模服务,其上的全部能力均已通过API的形式对外提供,当数据需要存储、处理时,仅需调用相应的API即可得到目标结果,也就是说用户可以不必关心分布式计算细节,从而达到分析大数据的目的。

目前,数加平台已经在企业界得到了大规模应用:

  •  物联网大数据应用:通过组合使用数加平台提供的Datahub、StreamCompute、MaxCompute、DataV等服务实现物联网数据的分析应用;
  •  预测即服务:组合使用数加平台提供的MaxCompute、机器学习、在线预测等服务实现孩子成绩的预测;
  •  个性化推荐:使用数加平台的推荐引擎快速搭建个性化推荐系统。

典型场景实践分享

接下来,将结合几个具体的应用案例讲解数加平台在各方面的实践经验。

物联网案例:智慧水务

693cda47f503ffff53b7c2815f1c128e32d9af73

通过IoT 设备对水务设备的流量、水压等数据进行实时采集和监控,再通过简单的配置将数据实时对接到大数据平台的DataHub,通过监控大屏进行实时控制。

42cb15655e8339b443d1573991e39f638bfad79d

上图是通用的物联网大数据应用参考架构。最前端是数据采集模块,然后进行数据存储,通过某些算法、模型发掘数据中的价值,最后变成有效的应用,如:

  •  可视化的展示,将水务整体的运行状态展示出来;
  •  故障预测,通过已有数据的分析,提前对可能发生故障的管道进行预测,提前维护。

在物联网应用场景中,通过数加平台提供的离线存储和计算、流式计算、机器学习模型训练、数据可视化等等大数据服务,有效地解放了使用者,他们只需关注流式计算SQL的开发、业务规则的配置以及偏好业务算法的参数配置,而无需关心底层的平台搭建、不同引擎之间的数据流转等问题,大大提升了开发效率。

个性化推荐案例

 

47610029397aee6cb836e9ca764590e3828290c9

个性化推荐是目前非常通用的大数据场景,所谓的个性化推荐是指对根据不同的用户喜好,定性地进行产品的推送。在这个过程中,需要对用户和产品的特征进行准确地把握。

82e6d283d66d0fc303e9f1f2d009704635ea17e6

利用数据平台提供的服务,可以快速地实现个性化推荐,具体配置包括以下五步:

  1. 添加资源,个性化推荐会涉及到离线模型训练、在线模型修正,以及Key-Value存储、MaxCompute计算等服务,所谓添加资源就是将这些服务添加进来;
  2. 添加业务、配置数据,即将多维度用户和产品的数据添加到个性化推荐引擎中;
  3. 配置推荐场景算法,在数加平台中一些常见的算法也是以服务形态提供的,使用者需要根据不同的应用场景选择合适的算法。
  4. API对接,上述配置完成后,再进行API对接。
  5. 查看效果报表,形成大数据应用的闭环,通过反馈修正算法和模型。

2f64a04e56471d8e3736d7696392d16137494e0a

上图是推荐引擎的通用系统架构,中间部分是组合离线计算、在线计算、AB Test等服务的推荐引擎;左侧是用户需要完成的工作,包括早期数据的配置以及最终通过推荐API将结果集成到应用中;右侧是监控以及在线数据存储部分。在推荐引擎中,用户可以通过场景管理配置推荐方法(推荐场景是指客户的APP中使用推荐功能的模块名称),场景隶属于业务,使用到的数据就是业务中配置的数据;同时场景中包含一个或多个算法流程(每一个算法流程都代表一种推荐物品的逻辑,由多个算法拼装组成),支持AB Test;此外,推荐系统还提供可视化编辑算法、支持同一个推荐位同时测试多种推荐算法以及多种算法模版供客户选择。

系统之间的对接通过API方式实现,其中API又分为日志API、推荐API、算法任务API三类:

  •  日志API用于接收业务采集的数据,以行为类数据为主;
  •  推荐API提供推荐的物品列表,用于在业务系统中展示给消费者进行推荐;
  •  算法任务API用于启动离线计算流程的算法任务、查看任务状态等。

总结

自始至终,阿里云从一开始就坚持将计算能力变成像水电煤一样的公共服务,提供给大众,而非单单而不是卖服务器给客户,这跟今日流行的Serverless 架构理念是一致的。

Serverless 理念在数加平台得到了很好的体现,数加平台今天已经可以提供很多业务场景化的计算服务,比如推荐引擎,规则引擎,以及各种人工智能的服务,用户可以实现进行各种数据采集、数据加工、BI商业智能、人工智能和数据创新等操作;此外,通过数加平台的数据市场相关API,开发者可以按需以服务的方式调用所需的第三方数据(如获取各种交通数据、气象数据、海洋数据、水利数据等),并结合自有数据实现大数据分析和应用,以得到数据价值的最大化。阿里云数加平台作为大数据Serverless的典范,将助力企业在DT时代更敏捷、更智能、更具洞察力。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
27天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
114 12
|
10天前
|
存储 人工智能 数据管理
|
5天前
|
运维 Cloud Native Serverless
Serverless Argo Workflows大规模计算工作流平台荣获信通院“云原生技术创新标杆案例”
2024年12月24日,阿里云Serverless Argo Workflows大规模计算工作流平台荣获由中国信息通信研究院颁发的「云原生技术创新案例」奖。
|
1月前
|
消息中间件 运维 安全
C5GAME 游戏饰品交易平台借助 RocketMQ Serverless 保障千万级玩家流畅体验
游戏行业蓬勃发展,作为国内领先的 STEAM 游戏饰品交易的服务平台,看 C5GAME 如何利用 RocketMQ Serverless 技术,为千万级玩家提供流畅的游戏体验,同时降低成本并提升运维效率。
110 13
C5GAME 游戏饰品交易平台借助 RocketMQ Serverless 保障千万级玩家流畅体验
|
3天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
9天前
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
35 4
|
17天前
|
SQL DataWorks 数据可视化
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
|
17天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
55 2
|
2月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据生态圈体系
阿里云大数据计算服务MaxCompute(原ODPS)提供大规模数据存储与计算,支持离线批处理。针对实时计算需求,阿里云推出Flink版。此外,阿里云还提供数据存储服务如OSS、Table Store、RDS和DRDS,以及数据分析平台DataWorks、Quick BI和机器学习平台PAI,构建全面的大数据生态系统。
84 18
|
12天前
|
SQL 存储 分布式计算
阿里云 Paimon + MaxCompute 极速体验
Paimon 和 MaxCompute 的对接经历了长期优化,解决了以往性能不足的问题。通过半年紧密合作,双方团队专门提升了 Paimon 在 MaxCompute 上的读写性能。主要改进包括:采用 Arrow 接口减少数据转换开销,内置 Paimon SDK 提升启动速度,实现原生读写能力,减少中间拷贝与转换,显著降低 CPU 开销与延迟。经过双十一实战验证,Paimon 表的读写速度已接近 MaxCompute 内表,远超传统外表。欢迎体验!

相关产品

  • 云原生大数据计算服务 MaxCompute