PostgreSQL Python 开发者手册

简介:

标签

PostgreSQL , Java , php , ruby , python , C


背景

转自 http://zetcode.com/db/postgresqlpythontutorial/

正文

This is a Python programming tutorial for the PostgreSQL database. It covers the basics of PostgreSQL programming with the Python language. You might also want to check the Python tutorial or PostgreSQL PHP tutorial on ZetCode. SQLAlchemy tutorial covers SQLAlchemy SQL Toolkit and Object Relational Mapper.

Several libraries exist for connecting to the PostgreSQL database from the Python language. In this tutorial we will use the psycopg2 module. It is a PostgreSQL database adapter for the Python programming language. According to the module documentation it is currently the most popular Python module for the PostgreSQL database. It is mostly implemented in C as a libpq wrapper.

About PostgreSQL database

PostgreSQL is a powerful, open source object-relational database system. It is a multi-user database management system. It runs on multiple platforms including Linux, FreeBSD, Solaris, Microsoft Windows and Mac OS X. PostgreSQL is developed by the PostgreSQL Global Development Group.

Prerequisites

To work with this tutorial, we must have Python language, PostgreSQL database and psycopg2 language binding installed on our system.

$ sudo apt-get install postgresql  

On an Ubuntu based system we can install the PostgreSQL database using the above command.

$ sudo update-rc.d -f postgresql remove  
 Removing any system startup links for /etc/init.d/postgresql ...  
   /etc/rc0.d/K21postgresql  
   /etc/rc1.d/K21postgresql  
   /etc/rc2.d/S19postgresql  
   /etc/rc3.d/S19postgresql  
   /etc/rc4.d/S19postgresql  
   /etc/rc5.d/S19postgresql  
   /etc/rc6.d/K21postgresql  

If we install the PostgreSQL database from packages, it is automatically added to the start up scripts of the operating system. If we are only learning to work with the database, it is unnecessary to start the database each time we boot the system. The above command removes any system startup links for the PostgreSQL database.

$ /etc/init.d/postgresql status  
Running clusters: 9.1/main  

$ service postgresql status  
Running clusters: 9.1/main   

We check if the PostgreSQL server is running. If not, we need to start the server.

$ sudo service postgresql start  
 * Starting PostgreSQL 9.1 database server        [ OK ]  

On Ubuntu Linux we can start the server with the service postgresql start command.

$ sudo service postgresql stop  
[sudo] password for janbodnar:   
 * Stopping PostgreSQL 9.1 database server        [ OK ]   

We use the service postgresql stop command to stop the PostgreSQL server.

$ sudo apt-get install python-psycopg2  

Here we install the psycopg2 module on a Ubuntu system.

$ sudo -u postgres createuser janbodnar  
Shall the new role be a superuser? (y/n) n  
Shall the new role be allowed to create databases? (y/n) y  
Shall the new role be allowed to create more new roles? (y/n) n  

We create a new role in the PostgreSQL system. We allow it to have ability to create new databases. A role is a user in a database world. Roles are separate from operating system users. We have created a new user without the -W option, e.g. we have not specified a password. This enables us to connect to a database with this user without password authentication. Note that this works only on localhost.

$ sudo -u postgres createdb testdb -O janbodnar  

The createdb command creates a new PostgreSQL database with the owner janbodnar.

Version

In the first code example, we will get the version of the PostgreSQL database.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect(database='testdb', user='janbodnar')   
    cur = con.cursor()  
    cur.execute('SELECT version()')            
    ver = cur.fetchone()  
    print ver      


except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

In the above Python script we connect to the previously created testdb database. We execute an SQL statement which returns the version of the PostgreSQL database.

import psycopg2  

The psycopg2 is a Python module which is used to work with the PostgreSQL database.

con = None  

We initialize the con variable to None. In case we could not create a connection to the database (for example the disk is full), we would not have a connection variable defined. This would lead to an error in the finally clause.

con = psycopg2.connect(database='testdb', user='janbodnar')   

The connect() method creates a new database session and returns a connection object. The user was created without a password. On localhost, we can omit the password option. Otherwise, it must be specified.

cur = con.cursor()  
cur.execute('SELECT version()')     

From the connection, we get the cursor object. The cursor is used to traverse the records from the result set. We call the execute() method of the cursor and execute the SQL statement.

ver = cur.fetchone()  

We fetch the data. Since we retrieve only one record, we call the fetchone() method.

print ver    

We print the data that we have retrieved to the console.

except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  

In case of an exception, we print an error message and exit the script with an error code 1.

finally:  

    if con:  
        con.close())   

In the final step, we release the resources.

$ ./version2.py   
('PostgreSQL 9.3.5 on i686-pc-linux-gnu, compiled by gcc   
    (Ubuntu 4.8.2-19ubuntu1) 4.8.2, 32-bit',)  

Running the version.py script.

Inserting data

We will create a Cars table and insert several rows to it.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")     

    cur = con.cursor()  

    cur.execute("CREATE TABLE Cars(Id INTEGER PRIMARY KEY, Name VARCHAR(20), Price INT)")  
    cur.execute("INSERT INTO Cars VALUES(1,'Audi',52642)")  
    cur.execute("INSERT INTO Cars VALUES(2,'Mercedes',57127)")  
    cur.execute("INSERT INTO Cars VALUES(3,'Skoda',9000)")  
    cur.execute("INSERT INTO Cars VALUES(4,'Volvo',29000)")  
    cur.execute("INSERT INTO Cars VALUES(5,'Bentley',350000)")  
    cur.execute("INSERT INTO Cars VALUES(6,'Citroen',21000)")  
    cur.execute("INSERT INTO Cars VALUES(7,'Hummer',41400)")  
    cur.execute("INSERT INTO Cars VALUES(8,'Volkswagen',21600)")  

    con.commit()  


except psycopg2.DatabaseError, e:  

    if con:  
        con.rollback()  

    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

The above script creates a Cars table and inserts 8 rows into the table.

cur.execute("CREATE TABLE Cars(Id INTEGER PRIMARY KEY, Name VARCHAR(20), Price INT)")  

This SQL statement creates a new Cars table. The table has three columns.

cur.execute("INSERT INTO Cars VALUES(1,'Audi',52642)")  
cur.execute("INSERT INTO Cars VALUES(2,'Mercedes',57127)")  

These two lines insert two cars into the table.

con.commit()  

The changes are committed to the database.

if con:  
    con.rollback()  

In case of an error, we roll back any possible changes to our database table.

$ psql testdb  
psql (9.3.5)  
Type "help" for help.  

testdb=> SELECT * FROM Cars;  
 id |    name    | price    
----+------------+--------  
  1 | Audi       |  52642  
  2 | Mercedes   |  57127  
  3 | Skoda      |   9000  
  4 | Volvo      |  29000  
  5 | Bentley    | 350000  
  6 | Citroen    |  21000  
  7 | Hummer     |  41400  
  8 | Volkswagen |  21600  
(8 rows)  

We verify the written data with the psql tool.

We are going to create the same table. This time using the convenience executemany() method.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


cars = (  
    (1, 'Audi', 52642),  
    (2, 'Mercedes', 57127),  
    (3, 'Skoda', 9000),  
    (4, 'Volvo', 29000),  
    (5, 'Bentley', 350000),  
    (6, 'Citroen', 21000),  
    (7, 'Hummer', 41400),  
    (8, 'Volkswagen', 21600)  
)  

con = None  

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")     

    cur = con.cursor()    

    cur.execute("DROP TABLE IF EXISTS Cars")  
    cur.execute("CREATE TABLE Cars(Id INT PRIMARY KEY, Name TEXT, Price INT)")  
    query = "INSERT INTO Cars (Id, Name, Price) VALUES (%s, %s, %s)"  
    cur.executemany(query, cars)  

    con.commit()  


except psycopg2.DatabaseError, e:  

    if con:  
        con.rollback()  

    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

This script drops a Cars table if it exists and (re)creates it.

cur.execute("DROP TABLE IF EXISTS Cars")  
cur.execute("CREATE TABLE Cars(Id INT PRIMARY KEY, Name TEXT, Price INT)")  

The first SQL statement drops the Cars table if it exists. The second SQL statement creates the Cars table.

query = "INSERT INTO Cars (Id, Name, Price) VALUES (%s, %s, %s)"  

This is the query that we will use.

cur.executemany(query, cars)  

We insert 8 rows into the table using the convenience executemany() method. The first parameter of this method is a parameterized SQL statement. The second parameter is the data, in the form of tuple of tuples.

Retrieving data

Now that we have inserted some data into the database, we want to retrieve it back.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")   

    cur = con.cursor()      
    cur.execute("SELECT * FROM Cars")  

    rows = cur.fetchall()  

    for row in rows:  
        print row  


except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

In this example, we retrieve all data from the Cars table.

cur.execute("SELECT * FROM Cars")  

This SQL statement selects all data from the Cars table.

rows = cur.fetchall()  

The fetchall() method gets all records. It returns a result set. Technically, it is a tuple of tuples. Each of the inner tuples represent a row in the table.

for row in rows:  
    print row  

We print the data to the console, row by row.

$ ./fetch1.py  
(1, 'Audi', 52642)  
(2, 'Mercedes', 57127)  
(3, 'Skoda', 9000)  
(4, 'Volvo', 29000)  
(5, 'Bentley', 350000)  
(6, 'Citroen', 21000)  
(7, 'Hummer', 41400)  
(8, 'Volkswagen', 21600)  

This is the output of the example.

Returning all data at a time may not be feasible. We can fetch rows one by one.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")   

    cur = con.cursor()       
    cur.execute("SELECT * FROM Cars")  

    while True:  

        row = cur.fetchone()  

        if row == None:  
            break  

        print row[0], row[1], row[2]  


except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

In this script we connect to the database and fetch the rows of the Cars table one by one.

while True:  

We access the data from the while loop. When we read the last row, the loop is terminated.

row = cur.fetchone()  

if row == None:  
    break  

The fetchone() method returns the next row from the table. If there is no more data left, it returns None. In this case we break the loop.

print row[0], row[1], row[2]  

The data is returned in the form of a tuple. Here we select records from the tuple. The first is the Id, the second is the car name and the third is the price of the car.

$ ./retrieveonebyone.py  
1 Audi 52642  
2 Mercedes 57127  
3 Skoda 9000  
4 Volvo 29000  
5 Bentley 350000  
6 Citroen 21000  
7 Hummer 41400  
8 Volkswagen 21600  

This is the output of the example.

The dictionary cursor

The default cursor returns the data in a tuple of tuples. When we use a dictionary cursor, the data is sent in a form of Python dictionaries. This way we can refer to the data by their column names.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import psycopg2.extras  
import sys  


con = None  

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")   

    cursor = con.cursor(cursor_factory=psycopg2.extras.DictCursor)  
    cursor.execute("SELECT * FROM Cars")  

    rows = cursor.fetchall()  

    for row in rows:  
        print "%s %s %s" % (row["id"], row["name"], row["price"])  


except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

In this example, we print the contents of the Cars table using the dictionary cursor.

import psycopg2.extras  

The dictionary cursor is located in the extras module.

cursor = con.cursor(cursor_factory=psycopg2.extras.DictCursor)  

We create a DictCursor.

for row in rows:  
    print "%s %s %s" % (row["id"], row["name"], row["price"])  

The data is accessed by the column names. The column names are folded to lowercase in PostgreSQL (unless quoted) and are case sensitive. Therefore, we have to provide the column names in lowercase.

Parameterized queries

Now we will concern ourselves with parameterized queries. When we use parameterized queries, we use placeholders instead of directly writing the values into the statements. Parameterized queries increase security and performance.

The Python psycopg2 module supports two types of placeholders: ANSI C printf format and the Python extended format.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

uId = 1  
uPrice = 62300   

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")   

    cur = con.cursor()  

    cur.execute("UPDATE Cars SET Price=%s WHERE Id=%s", (uPrice, uId))          
    con.commit()  

    print "Number of rows updated: %d" % cur.rowcount  



except psycopg2.DatabaseError, e:  

    if con:  
        con.rollback()  

    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

We update a price of one car. In this code example, we use the question mark placeholders.

cur.execute("UPDATE Cars SET Price=%s WHERE Id=%s", (uPrice, uId))  

The characters (%s) are placeholders for values. The values are added to the placeholders.

print "Number of rows updated: %d" % cur.rowcount  

The rowcount property returns the number of updated rows. In our case one row was updated.

$ ./parameterized1.py  
Number of rows updated: 1  

testdb=> SELECT * FROM cars WHERE id=1;  
 id | name | price   
----+------+-------  
  1 | Audi | 62300  
(1 row)  

The price of the car was updated. We check the change with the psql tool.

The second example uses parameterized statements with Python extended format.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

uid = 3  

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")   

    cur = con.cursor()  

    cur.execute("SELECT * FROM Cars WHERE Id=%(id)s", {'id': uid } )  

    print cur.fetchone()  


except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

We select a name and a price of a car using pyformat parameterized statement.

cur.execute("SELECT * FROM Cars WHERE Id=%(id)s", {'id': uid } )  

The named placeholders start with a colon character.

$ ./parameterized2.py  
(3, 'Skoda', 9000)  

Output of the example.

Inserting images

In this section, we are going to insert an image to the PostgreSQL database. Note that some people argue against putting images into databases. Here we only show how to do it. We do not talk about technical issues of whether to save images in databases or not.

testdb=> CREATE TABLE Images(Id INT PRIMARY KEY, Data BYTEA);  

For this example, we create a new table called Images. For the images, we use the BYTEA data type. It allows to store binary strings.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


def readImage():  

    try:  
        fin = open("woman.jpg", "rb")  
        img = fin.read()  
        return img  

    except IOError, e:  

        print "Error %d: %s" % (e.args[0],e.args[1])  
        sys.exit(1)  

    finally:  

        if fin:  
            fin.close()  


try:  
    con = psycopg2.connect(database="testdb", user="janbodnar")   

    cur = con.cursor()  
    data = readImage()  
    binary = psycopg2.Binary(data)  
    cur.execute("INSERT INTO Images(Id, Data) VALUES (1, %s)", (binary,) )  

    con.commit()      

except psycopg2.DatabaseError, e:  

    if con:  
        con.rollback()  

    print 'Error %s' % e      
    sys.exit(1)  

finally:  

    if con:  
        con.close()     

In this script, we read an image from the current working directory and write it into the Images table of the PostgreSQL testdb database.

try:  
    fin = open("woman.jpg", "rb")  
    img = fin.read()  
    return img  

We read binary data from the filesystem. We have a JPG image called woman.jpg.

binary = psycopg2.Binary(data)  

The data is encoded using the psycopg2 Binary object.

cur.execute("INSERT INTO Images(Id, Data) VALUES (1, %s)", (binary,) )  

This SQL statement is used to insert the image into the database.

Reading images

In this section, we are going to perform the reverse operation. We will read an image from the database table.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


def writeImage(data):  

    try:  
        fout = open('woman2.jpg','wb')  
        fout.write(data)  

    except IOError, e:      
        print "Error %d: %s" % (e.args[0], e.args[1])  
        sys.exit(1)  

    finally:  

        if fout:  
            fout.close()    


try:  
    con = psycopg2.connect(database="testdb", user="janbodnar")   

    cur = con.cursor()      
    cur.execute("SELECT Data FROM Images LIMIT 1")  
    data = cur.fetchone()[0]  

    writeImage(data)  

except psycopg2.DatabaseError, e:  

    print 'Error %s' % e      
    sys.exit(1)  

finally:  

    if con:  
        con.close()        

We read image data from the images table and write it to another file, which we call woman2.jpg.

try:  
    fout = open('woman2.jpg','wb')  
    fout.write(data)  

We open a binary file in a writing mode. The data from the database is written to the file.

cur.execute("SELECT Data FROM Images LIMIT 1")  
data = cur.fetchone()[0]  

These two lines select and fetch data from the Images table. We obtain the binary data from the first row.

Metadata

Metadata is information about the data in the database. Metadata in a PostgreSQL database contains information about the tables and columns, in which we store data. Number of rows affected by an SQL statement is a metadata. Number of rows and columns returned in a result set belong to metadata as well.

Metadata in PostgreSQL can be obtained using from the description property of the cursor object or from the information_schema table.

Next we will print all rows from the Cars table with their column names.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect("dbname='testdb' user='janbodnar'")   

    cur = con.cursor()  

    cur.execute('SELECT * FROM Cars')  

    col_names = [cn[0] for cn in cur.description]  

    rows = cur.fetchall()  

    print "%s %-10s %s" % (col_names[0], col_names[1], col_names[2])  

    for row in rows:      
        print "%2s %-10s %s" % row  



except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

We print the contents of the Cars table to the console. Now, we include the names of the columns too. The records are aligned with the column names.

col_names = [cn[0] for cn in cur.description]  

We get the column names from the description property of the cursor object.

print "%s %-10s %s" % (col_names[0], col_names[1], col_names[2])  

This line prints three column names of the Cars table.

for row in rows:      
    print "%2s %-10s %s" % row  

We print the rows using the for loop. The data is aligned with the column names.

$ ./colnames.py   
id name       price  
 2 Mercedes   57127  
 3 Skoda      9000  
 4 Volvo      29000  
 5 Bentley    350000  
 6 Citroen    21000  
 7 Hummer     41400  
 8 Volkswagen 21600  
 1 Audi       62300  

Output.

In the following example we will list all tables in the testdb database.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect(database='testdb', user='janbodnar')   

    cur = con.cursor()   
    cur.execute("""SELECT table_name FROM information_schema.tables   
       WHERE table_schema = 'public'""")      

    rows = cur.fetchall()  

    for row in rows:  
        print row[0]  


except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

The code example prints all available tables in the current database to the terminal.

cur.execute("""SELECT table_name FROM information_schema.tables   
    WHERE table_schema = 'public'""")   

The table names are stored inside the system information_schema table.

$ ./list_tables.py  
cars  
images  

These were the tables on our system.

Export and import of data

We can export and import data using copy_to() and copy_from() methods.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  
fout = None  


try:  

    con = psycopg2.connect(database='testdb', user='janbodnar')   

    cur = con.cursor()  
    fout = open('cars', 'w')  
    cur.copy_to(fout, 'cars', sep="|")                          


except psycopg2.DatabaseError, e:  
    print 'Error %s' % e      
    sys.exit(1)  

except IOError, e:      
    print 'Error %s' % e     
    sys.exit(1)  

finally:  

    if con:  
        con.close()  

    if fout:  
        fout.close()   

In the above example, we copy the data from the Cars table into the cars file.

fout = open('cars.sql','w')  

We open a file where we will write the data from the Cars table.

cur.copy_to(fout, 'cars', sep="|")     

The copy_to method copies data from the Cars table to the opened file. The columns are separated with a | character.

$ cat cars  
2|Mercedes|57127  
3|Skoda|9000  
4|Volvo|29000  
5|Bentley|350000  
6|Citroen|21000  
7|Hummer|41400  
8|Volkswagen|21600  
1|Audi|62300  

These are the contents of the cars file.

Now we are going to perform a reverse operation. We will import the dumped table back into the database table.

testdb=> DELETE FROM Cars;  
DELETE 8  

We delete the data from the Cars table.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  
f = None  

try:  

    con = psycopg2.connect(database='testdb', user='janbodnar')   

    cur = con.cursor()  
    f = open('cars', 'r')  
    cur.copy_from(f, 'cars', sep="|")                      
    con.commit()  

except psycopg2.DatabaseError, e:  

    if con:  
        con.rollback()  

    print 'Error %s' % e      
    sys.exit(1)  

except IOError, e:      

    if con:  
        con.rollback()  

    print 'Error %s' % e     
    sys.exit(1)  

finally:  

    if con:  
        con.close()  

    if f:  
        f.close()    

In this script, we read the contents of the cars file and copy it back to the cars table.

f = open('cars', 'r')  
cur.copy_from(f, 'cars', sep="|")                      
con.commit()  

We open the cars file for reading and copy the contents to the Cars table. The changes are committed.

SELECT * FROM Cars;  
 id |    name    | price    
----+------------+--------  
  2 | Mercedes   |  57127  
  3 | Skoda      |   9000  
  4 | Volvo      |  29000  
  5 | Bentley    | 350000  
  6 | Citroen    |  21000  
  7 | Hummer     |  41400  
  8 | Volkswagen |  21600  
  1 | Audi       |  62300  
(8 rows)  

The output shows that we have successfully recreated the saved Cars table.

Transactions

A transaction is an atomic unit of database operations against the data in one or more databases. The effects of all the SQL statements in a transaction can be either all committed to the database or all rolled back.

In psycopg2 module transactions are handled by the connection class. The first command of a connection cursor starts a transaction. (We do not need to enclose our SQL commands by BEGIN and END statements to create a transaction. This is handled automatically by psycopg2.) The following commands are executed in the context of this new transaction. In case of an error, the transaction is aborted and no further commands are executed until the rollback() method.

The documentation to the psycopg2 module says that the connection is responsible to terminate its transaction, calling either the commit() or rollback() method. Committed changes are immediately made persistent into the database. Closing the connection using the close() method or destroying the connection object (using del or letting it fall out of scope) will result in an implicit rollback() call.

The psycopg2 module also supports an autocommit mode, where all changes to the tables are immediately effective. To run in autocommit mode, we set the autocommit property of the connection object to True.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect(database='testdb', user='janbodnar')   

    cur = con.cursor()   

    cur.execute("DROP TABLE IF EXISTS Friends")  
    cur.execute("CREATE TABLE Friends(Id serial PRIMARY KEY, Name VARCHAR(10))")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Tom')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Jim')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Robert')")  

    #con.commit()  

except psycopg2.DatabaseError, e:  

    if con:  
        con.rollback()  

    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

We create a Friends table and try to fill it with data. However, as we will see, the data will be not committed.

#con.commit()  

The commit() method is commented. If we uncomment the line, the data will be written to the table.

finally:  

    if con:  
        con.close()  

The finally block is always executed. If we have not committed the changes and no error occures (which would roll back the changes) the transaction is still opened. The connection is closed with the close() method and the transaction is terminated with an implicit call to the rollback() method.

testdb=> \dt  
          List of relations  
 Schema |  Name   | Type  |   Owner     
--------+---------+-------+-----------  
 public | cars    | table | janbodnar  
 public | friends | table | janbodnar  
 public | images  | table | janbodnar  
(3 rows)  

Only after we have uncommented the line, the Friends table is created.

In the autocommit mode, an SQL statement is executed immediately.

#!/usr/bin/python  
# -*- coding: utf-8 -*-  

import psycopg2  
import sys  


con = None  

try:  

    con = psycopg2.connect(database='testdb', user='janbodnar')   

    con.autocommit = True  

    cur = con.cursor()   

    cur.execute("DROP TABLE IF EXISTS Friends")  
    cur.execute("CREATE TABLE Friends(Id serial PRIMARY KEY, Name VARCHAR(10))")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Jane')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Tom')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Jim')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Robert')")  
    cur.execute("INSERT INTO Friends(Name) VALUES ('Patrick')")  


except psycopg2.DatabaseError, e:  

    print 'Error %s' % e      
    sys.exit(1)  


finally:  

    if con:  
        con.close()  

In this example, we connect to the database in the autocommit mode. We do not call neither commit() nor rollback() methods.

con.autocommit = True  

We set the connection to the autocommit mode.

$ ./autocommit.py  

testdb=> SELECT * FROM Friends;  
 id |  name     
----+---------  
  1 | Jane  
  2 | Tom  
  3 | Rebecca  
  4 | Jim  
  5 | Robert  
  6 | Patrick  
(6 rows)  

The data was successfully committed to the Friends table.

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
8月前
|
IDE 开发工具 开发者
手把手教你安装PyCharm 2025:开发者的Python IDE配置全流程+避坑指南
本教程详细介绍了PyCharm 2025版本在Windows系统下的安装流程及配置方法,涵盖AI代码补全与智能调试工具链等新功能。内容包括系统要求、安装步骤、首次运行配置(如主题选择与插件安装)、创建首个Python项目,以及常见问题解决方法。此外,还提供了切换中文界面和延伸学习资源的指导,帮助用户快速上手并高效使用PyCharm进行开发。
4231 61
|
6月前
|
存储 关系型数据库 测试技术
拯救海量数据:PostgreSQL分区表性能优化实战手册(附压测对比)
本文深入解析PostgreSQL分区表的核心原理与优化策略,涵盖性能痛点、实战案例及压测对比。首先阐述分区表作为继承表+路由规则的逻辑封装,分析分区裁剪失效、全局索引膨胀和VACUUM堆积三大性能杀手,并通过电商订单表崩溃事件说明旧分区维护的重要性。接着提出四维设计法优化分区策略,包括时间范围分区黄金法则与自动化维护体系。同时对比局部索引与全局索引性能,展示后者在特定场景下的优势。进一步探讨并行查询优化、冷热数据分层存储及故障复盘,解决分区锁竞争问题。
826 2
|
6月前
|
Linux 数据库 数据安全/隐私保护
Python web Django快速入门手册全栈版,共2590字,短小精悍
本教程涵盖Django从安装到数据库模型创建的全流程。第一章介绍Windows、Linux及macOS下虚拟环境搭建与Django安装验证;第二章讲解项目创建、迁移与运行;第三章演示应用APP创建及项目汉化;第四章说明超级用户创建与后台登录;第五章深入数据库模型设计,包括类与表的对应关系及模型创建步骤。内容精炼实用,适合快速入门Django全栈开发。
305 1
|
7月前
|
供应链 API 开发者
1688 商品数据接口终极指南:Python 开发者如何高效获取标题 / 价格 / 销量数据(附调试工具推荐)
1688商品列表API是阿里巴巴开放平台提供的服务,允许开发者通过API获取1688平台的商品信息(标题、价格、销量等)。适用于电商选品、比价工具、供应链管理等场景。使用时需构造请求URL,携带参数(如q、start_price、end_price等),发送HTTP请求并解析返回的JSON/XML数据。示例代码展示了如何用Python调用该API获取商品列表。
417 18
|
10月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
算法 Python
Python 大神修炼手册:图的深度优先&广度优先遍历,深入骨髓的解析
在 Python 编程中,掌握图的深度优先遍历(DFS)和广度优先遍历(BFS)是进阶的关键。这两种算法不仅理论重要,还能解决实际问题。本文介绍了图的基本概念、邻接表表示方法,并给出了 DFS 和 BFS 的 Python 实现代码示例,帮助读者深入理解并应用这些算法。
334 2
|
前端开发 API 开发者
深度剖析:AJAX、Fetch API如何成为Python后端开发者的最佳拍档!
深度剖析:AJAX、Fetch API如何成为Python后端开发者的最佳拍档!
141 4
|
SQL 关系型数据库 数据库
使用 PostgreSQL 和 Python 实现数据库操作
【10月更文挑战第2天】使用 PostgreSQL 和 Python 实现数据库操作
|
关系型数据库 数据库 PostgreSQL
使用 PostgreSQL 和 Python 实现全文搜索
【10月更文挑战第2天】使用 PostgreSQL 和 Python 实现全文搜索
199 1
|
存储 IDE 开发工具
编写Python参考手册速查软件(一)
编写Python参考手册速查软件(一)
172 1

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版