MongoDB应用案例:使用 MongoDB 存储商品分类信息

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介:

电商业务一个基本的功能模块就是存储品类丰富的商品信息,各种商品特性、参数各异,MongoDB 灵活的文档模型非常适合于这类业务,本文主要介绍如何使用 MongoDB 来存储商品分类信息,内容翻译自User case - Product Catalog

关系型数据库解决方案

上述问题使用传统的关系型数据库也可以解决,比如以下几种方案

针对不同商品,创建不同的表

比如音乐专辑、电影这2种商品,有一部分共同的属性,但也有很多自身特有的属性,可以创建2个不同的表,拥有不同的schema。

CREATE TABLE `product_audio_album` (
    `sku` char(8) NOT NULL,
    ...
    `artist` varchar(255) DEFAULT NULL,
    `genre_0` varchar(255) DEFAULT NULL,
    `genre_1` varchar(255) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`))
...
CREATE TABLE `product_film` (
    `sku` char(8) NOT NULL,
    ...
    `title` varchar(255) DEFAULT NULL,
    `rating` char(8) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`))
...

这种做法的主要问题在于

  • 针对每个新的商品分类,都需要创建新的表
  • 应用程序开发者必须显式的将请求分发到对应的表上来查询,一次查询多种商品实现起来比较麻烦

所有商品存储到单张表

CREATE TABLE `product` (
    `sku` char(8) NOT NULL,
    ...
    `artist` varchar(255) DEFAULT NULL,
    `genre_0` varchar(255) DEFAULT NULL,
    `genre_1` varchar(255) DEFAULT NULL,
    ...
    `title` varchar(255) DEFAULT NULL,
    `rating` char(8) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`))
    

将所有的商品存储到一张表,这张表包含所有商品需要的属性,不同的商品根据需要设置不同的属性,这种方法使得商品查询比较简单,并且允许一个查询跨多种商品,但缺点是浪费的空间比较多。

提取公共属性,多表继承

CREATE TABLE `product` (
    `sku` char(8) NOT NULL,
    `title` varchar(255) DEFAULT NULL,
    `description` varchar(255) DEFAULT NULL,
    `price`, ...
    PRIMARY KEY(`sku`))

CREATE TABLE `product_audio_album` (
    `sku` char(8) NOT NULL,
    ...
    `artist` varchar(255) DEFAULT NULL,
    `genre_0` varchar(255) DEFAULT NULL,
    `genre_1` varchar(255) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`),
    FOREIGN KEY(`sku`) REFERENCES `product`(`sku`))
...
CREATE TABLE `product_film` (
    `sku` char(8) NOT NULL,
    ...
    `title` varchar(255) DEFAULT NULL,
    `rating` char(8) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`),
    FOREIGN KEY(`sku`) REFERENCES `product`(`sku`))
...

上述方案将所有商品公共的属性提取出来,将公共属性存储到一张表里,每种商品根据自身的需要创建新的表,新表里只存储该商品特有的信息。

Entity Attribute Values 形式存储

所有的数据按照<商品SKU, 属性、值> 的3元组的形式存储,这个方案实际上是把关系型数据库当KV存储使用,模型简单,但应对复杂的查询不是很方便。

Entity Attribute Values
sku_00e8da9b type Audio Album
sku_00e8da9b title A Love Supreme
sku_00e8da9b ... ...
sku_00e8da9b artist John Coltrane
sku_00e8da9b genre Jazz
sku_00e8da9b genre General
... ... ...

MongoDB 解决方案

MognoDB 与关系型数据库不同,其无schema,文档内容可以非常灵活的定制,能很好的使用上述商品分类存储的需求; 将商品信息存储在一个集合里,集合里不同的商品可以自定义文档内容。

比如一个音乐专辑可以类似如下的文档结构

{
  sku: "00e8da9b",
  type: "Audio Album",
  title: "A Love Supreme",
  description: "by John Coltrane",
  asin: "B0000A118M",

  shipping: {
    weight: 6,
    dimensions: {
      width: 10,
      height: 10,
      depth: 1
    },
  },

  pricing: {
    list: 1200,
    retail: 1100,
    savings: 100,
    pct_savings: 8
  },

  details: {
    title: "A Love Supreme [Original Recording Reissued]",
    artist: "John Coltrane",
    genre: [ "Jazz", "General" ],
        ...
    tracks: [
      "A Love Supreme Part I: Acknowledgement",
      "A Love Supreme Part II - Resolution",
      "A Love Supreme, Part III: Pursuance",
      "A Love Supreme, Part IV-Psalm"
    ],
  },
}

而一部电影则可以存储为

{
  sku: "00e8da9d",
  type: "Film",
  ...,
  asin: "B000P0J0AQ",

  shipping: { ... },

  pricing: { ... },

  details: {
    title: "The Matrix",
    director: [ "Andy Wachowski", "Larry Wachowski" ],
    writer: [ "Andy Wachowski", "Larry Wachowski" ],
    ...,
    aspect_ratio: "1.66:1"
  },
}

所有商品都拥有一些共同的基本信息,特定的商品可以根据需要扩展独有的内容,非常方便; 基于上述模型,MongoDB 也能很好的服务各类查询。

查询某个演员参演的所有电影,并按发型日志排序


db.products.find({'type': 'Film', 'details.actor': 'Keanu Reeves'}).sort({'details.issue_date', -1})

上述查询也可以通过建立索引来加速

db.products.createIndex({ type: 1, 'details.actor': 1, 'details.issue_date': -1 })

查询标题里包含特定信息的所有电影

db.products.find({
    'type': 'Film',
    'title': {'$regex': '.*hacker.*', '$options':'i'}}).sort({'details.issue_date', -1})

可建立如下索引来加速查询

 db.products.createIndex({ type: 1, details.issue_date: -1, title: 1 })

扩展

当单个节点无法满足海量商品信息存储的需求时,就需要使用MongoDB sharding来扩展,假定大量的查询都是都会基于商品类型,那么就可以使用商品类型字段来进行分片。

db.shardCollection('products', { key: {type: 1} })

分片时,尽量使用复合的索引字段,这样能满足更多的查询需求,比如基于商品类型之后,还会经常根据商品的风格标签来查询,则可以把商品的标签字段作为第二分片key。

db.shardCollection('products', { key: {type: 1, 'details.genre': 1} })

如果某种类型的商品,拥有相同标签的特别多,则会出现jumbo chunk的问题,导致无法迁移,可以进一步的优化分片key,以避免这种情况。


db.shardCollection('products', { key: {type: 1, 'details.genre': 1, sku: 1} })

加入第3分片key之后,即使类型、风格标签都相同,但其sku信息肯定不同,就肯定不会出现超大的chunk。

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
4月前
|
存储 缓存 NoSQL
MongoDB内部的存储原理
这篇文章详细介绍了MongoDB的内部存储原理,包括存储引擎WiredTiger的架构、btree与b+tree的比较、cache机制、page结构、写操作流程、checkpoint和WAL日志,以及分布式存储的架构。
165 1
MongoDB内部的存储原理
|
3月前
|
存储 缓存 NoSQL
MongoDB 是什么?有哪些应用场景?
MongoDB 是一个由 MongoDB Inc. 开发的基于分布式文件存储的面向文档的数据库,自 2009 年推出以来,以其高性能、易部署、模式自由、强大的查询语言和出色的可扩展性受到广泛欢迎。它适用于互联网应用、日志分析、缓存、地理信息系统等多种场景。MongoDB 支持多种编程语言,并提供了丰富的社区支持,便于开发者快速上手。结合板栗看板等工具,MongoDB 可进一步提升数据存储、分析和同步的效率,支持个性化功能实现,助力团队协作和项目管理。
|
3月前
|
存储 NoSQL MongoDB
数据的存储--MongoDB文档存储(二)
数据的存储--MongoDB文档存储(二)
100 2
|
30天前
|
存储 NoSQL atlas
探索MongoDB:发展历程、优势与应用场景
MongoDB 是一个开源的文档型数据库,由 DoubleClick 团队于2007年创立,旨在解决传统数据库的扩展性和灵活性问题。它支持 JSON 格式的存储和查询,具备高可用性、高扩展性和灵活性等优势。MongoDB 适用于社交、物联网、视频直播和内容管理等多种场景,并被阿里巴巴、腾讯等一线互联网公司广泛使用。其主要版本包括 MongoDB Atlas(云服务)、MongoDB Enterprise Advanced(商业版)和 MongoDB Community Edition(免费版)。自2009年发布1.0版本以来,MongoDB 不断创新,最新版本为7.0,在性能和功能上持续优化。
79 12
|
25天前
|
存储 NoSQL MongoDB
【赵渝强老师】MongoDB逻辑存储结构
MongoDB的逻辑存储结构由数据库(Database)、集合(Collection)和文档(Document)组成,形成层次化数据模型。用户通过mongoshell或应用程序操作这些结构。视频讲解及结构图详见下文。
|
2月前
|
存储 NoSQL 关系型数据库
【赵渝强老师】MongoDB的存储结构
MongoDB 是一个可移植的 NoSQL 数据库,支持跨平台运行。其逻辑存储结构包括数据库、集合和文档,而物理存储结构则由命名空间文件、数据文件和日志文件组成。视频讲解和示意图进一步解释了这些概念。
|
3月前
|
存储 NoSQL 关系型数据库
数据的存储--MongoDB文档存储(一)
数据的存储--MongoDB文档存储(一)
132 3
|
4月前
|
存储 监控 NoSQL
MongoDB以其独特的优势和广泛的应用场景
MongoDB以其独特的优势和广泛的应用场景
134 8
|
3月前
|
存储 NoSQL 物联网
这些案例展示了MongoDB在不同行业中的广泛应用
这些案例展示了MongoDB在不同行业中的广泛应用
246 4
|
3月前
|
存储 NoSQL 物联网
MongoDB在多个行业有广泛应用
MongoDB在多个行业有广泛应用
124 4

相关产品

  • 云数据库 MongoDB 版