C++实用编程——随机生成迷宫算法

简介:

我们今天来做一个迷宫游戏。在其中有几个要领:
1.方向的控制
我们建立的迷宫是以坐标的形式出现的,越往上x坐标越小,越往左y坐标越小,这雨平面直角坐标系不同,要注意!

2.随机生成算法:

void init_maze(void); //初始化迷宫
void gotoxy(int x, int y); //移动光标
void path_up(int *x, int *y); //上构路径
void path_down(int *x, int *y); //下构路径
void path_left(int *x, int *y); //左构路径
void path_right(int *x, int *y); //右构路径
void setxy(int x, int y); //指定位打通路径
void path_local(int x, int y); //本置路径

这是我们需要的函数,主要功能呢在代码中有讲到。如果大家自己在编程时需要自己生成迷宫,可以借鉴一下。

3.代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<conio.h>
#include<iostream>
#include<ctime>
#include <windows.h>
using namespace std;
#define UP 72
#define DOWN 80
#define LEFT 75
#define RIGHT 77
 
#define M 40 //迷宫长度
#define N 82 //迷宫宽度
 
char maze[M/2][N/2]; //定义迷宫数组
char path[M-1][N-1]; //定义路径数组
 
void setview(void); //设置控制台窗口信息
int menu_maze(void); //主目录
void startgame(void); //开始游戏
void init_maze(void); //初始化迷宫
void gotoxy(int x, int y); //移动光标
void path_up(int *x, int *y); //上构路径
void path_down(int *x, int *y); //下构路径
void path_left(int *x, int *y); //左构路径
void path_right(int *x, int *y); //右构路径
void setxy(int x, int y); //指定位打通路径
void path_local(int x, int y); //本置路径
void go_up(int *x,int *y); //向上移动
void go_down(int *x,int *y); //向下移动
void go_left(int *x,int *y); //向左移动
void go_right(int *x,int *y); //向右移动
void HideCursor(void); //隐藏光标
void win(void);
 
int T;
int F;
int m;
int n;
int x;
int target;
int flag;
int local_x;
int local_y;
 
int main()
{
 setview();
 while(1)
 {
 switch(menu_maze())
 {
 case 49:
  system("cls");
  startgame();
  continue;
    case 50:exit(0);
  }
  }
}
 
void setview()
{
 HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE); // 获取标准输出设备句柄
 COORD size = {N*2+167, M*2+43};
 SetConsoleScreenBufferSize(hOut,size); //设置控制台窗口缓冲区大小 
 SMALL_RECT rc = {0,0,167,43};
 SetConsoleWindowInfo(hOut,true ,&rc); //设置窗口位置和大小
 
 SetConsoleTitle("迷宫"); //设置窗口标题
 
 HideCursor(); //隐藏光标
}
 
int menu_maze(void)
{
  char c;
 while(!(c>48&&c<51))
 {
 system("cls");
 printf("\n\n\n\n\n\n\n\n");
 printf("     ………………^欢迎使用DOS迷宫游戏^……………\n");
 printf("     *******************************************\n");
 printf("     **************** 1.开始游戏****************\n");
 printf("     **************** 2.退出游戏****************\n");
 printf("     *******************************************\n");
 c=getch();
 }
  return c;             
}
 
void startgame()             
{ 
 char key;
 local_x=0;
 local_y=0;
 system("cls");
 init_maze();
 gotoxy(2,2);
 printf("");
 while(path[M-2][N-2]!='o')
 {
 key=getch();
 if(key==-32)
 {
  key=getch();
  switch(key)
  {
  case UP:
  if(path[local_x-1][local_y]!='t'&&path[local_x-1][local_y]!='o'||local_x-1<0) break; //路径不通或越界
  go_up(&local_x,&local_y);
  break;
  case DOWN:
  if(path[local_x+1][local_y]!='t'&&path[local_x+1][local_y]!='o'||local_x+1>M-2) break;
  go_down(&local_x,&local_y);
  break;
  case LEFT:
  if(path[local_x][local_y-1]!='t'&&path[local_x][local_y-1]!='o'||local_y-1<0) break;
  go_left(&local_x,&local_y);
  break;
  case RIGHT:
  if(path[local_x][local_y+1]!='t'&&path[local_x][local_y+1]!='o'||local_y+1>N-2) break;
  go_right(&local_x,&local_y);
  break;
  }
 }
 }
 system("cls");
 win();
}
 
void init_maze()
{
 int i,j;
 
 T=1;
 F=1;
 m=0;
 n=0;
 x=0;
 flag=0;
 
 srand((unsigned)time(NULL));
 
 for(i=0;i<M/2;i++) //初始化迷宫数组
 {
 for(j=0;j<N/2;j++)
  maze[i][j]='f';
 }
 
 for(i=0;i<M-1;i++) //初始化路径数组
 {
 for(j=0;j<N-1;j++)
  path[i][j]='f';
 }
 path[0][0]='t';
 
 for(i=0;i<N+1;i++) //边框
 cout<<"**";
 cout<<endl;
 for(i=0;i<M+1;i++)
 {
 for(j=0;j<N+1;j++)
 {
  cout<<"■";
 }
 cout<<endl;
  
 }
 for(i=0;i<N+1;i++)
 cout<<"**";
 cout<<endl;
 
 while(F)//构建迷宫
 {
 if(T==0)
 {
  for(j=0;j<N/2;j++)
  {
  for(i=0;i<M/2;i++)
  {
   if(maze[i][j]=='f')
   {
   m=i;
   n=j;
   maze[m][n]='t';
   path_local(m,n);
   if(maze[m-1][n]==maze[0][0]) //向上有未打通路径
   {
    path_up(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   if(maze[m+1][n]==maze[0][0]) //向下有未打通路径
   {
    path_down(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   if(maze[m][n-1]==maze[0][0]) //向左有未打通路径
   {
    path_left(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   if(maze[m][n+1]==maze[0][0]) //向右有未打通路径
   {
    path_right(&m,&n);
    m=i;
    n=j;
    flag--;
    break;
   }
   }
  }
  if(m==i&&n==j)
   break;
  }
 }
 T=1;
 while(T)
 {
  x++;
  if(m==0&&n==0)//光标在起始位置
  {
  maze[m][n]='t';
  path_local(m,n);
  switch(rand()%2)
  {
  case 0://向下
   path_down(&m,&n);
   break;
  case 1://向右
   path_right(&m,&n);
  }
  }
  if(m==M/2-1&&n==0)//光标在左下角
  {
  switch(rand()%2)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break; //已打通路径
   path_up(&m,&n);
   break;
  case 1://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m==0&&n==N/2-1)//光标在右上角
  {
  switch(rand()%2)
  {
  case 0://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  }
  }
  if(m==M/2-1&&n==N/2-1)//光标在右下角
  {
  switch(rand()%2)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  }
  }
  if(m==0&&n!=0&&n!=N/2-1)//光标在第一行
  {
  switch(rand()%3)
  {
  case 0://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  case 2://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m!=0&&m!=M/2-1&&n==0)//光标在第一列
  {
  switch(rand()%3)
  {
   
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 2://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m==M/2-1&&n!=0&&n!=N/2-1)//光标在最后一行
  {
  switch(rand()%3)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  case 2://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(m!=0&&m!=M/2-1&&n==N/2-1)//光标在最后一列
  {
  switch(rand()%3)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 2://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
  }
  }
  if(m!=0&&m!=M/2-1&&n!=0&&n!=N/2-1)//光标在中间部分
  {
  switch(rand()%4)
  {
  case 0://向上
   if(maze[m-1][n]==maze[0][0]) break;
   path_up(&m,&n);
   break;
  case 1://向下
   if(maze[m+1][n]==maze[0][0]) break;
   path_down(&m,&n);
   break;
  case 2://向左
   if(maze[m][n-1]==maze[0][0]) break;
   path_left(&m,&n);
   break;
  case 3://向右
   if(maze[m][n+1]==maze[0][0]) break;
   path_right(&m,&n);
  }
  }
  if(x>M*N/4)
  {
  x=0;
  if(m==0&&n==0&&maze[m][n+1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//初始位置死路
  if(m==0&&n==N/2-1&&maze[m][n-1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//右上角死路
  if(m==M/2-1&&n==0&&maze[m][n+1]==maze[0][0]&&maze[m-1][n]==maze[0][0]) T=0;//左下角死路
  if(m==M/2-1&&n==N/2-1&&maze[m][n-1]==maze[0][0]&&maze[m-1][n]==maze[0][0]) T=0;//终点死路
  if(m==0&&n!=0&&n!=N/2-1&&maze[m][n-1]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//第一行死路
  if(m!=0&&m!=M/2-1&&n==0&&maze[m-1][n]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//第一列死路
  if(m!=0&&m!=M/2-1&&n==N/2-1&&maze[m-1][n]==maze[0][0]&&maze[m][n-1]==maze[0][0]&&maze[m+1][n]==maze[0][0]) T=0;//最后一列死路
  if(m==M/2-1&&n!=0&&n!=N/2-1&&maze[m-1][n]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m][n-1]==maze[0][0]) T=0;//最后一行死路
  if(m>0&&m<M/2-1&&n>0&&n<N/2-1&&maze[m+1][n]==maze[0][0]&&maze[m-1][n]==maze[0][0]&&maze[m][n+1]==maze[0][0]&&maze[m][n-1]==maze[0][0]) T=0;//中间部分死路
  }
 }
 if(flag==M*N/4)
  F=0;
 }
/* i=M+3;
 gotoxy(0,i);
 for(i=0;i<M-1;i++)
 {
 for(j=0;j<N-1;j++)
 {
  if(path[i][j]=='f')
  printf("1");
  if(path[i][j]=='t')
  printf("0");
 }
 printf("\n");
 }
 getch();*/
}
 
void gotoxy(int x, int y)
{
COORD pos = {x,y};
HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleCursorPosition(hOut, pos);
}
 
void path_up(int *x, int *y)
{
 int i,j;
 maze[--(*x)][*y]=maze[0][0];
 path[2*(*x+1)-1][2*(*y)]=path[0][0];
 path_local(*x,*y);
 i=4*(*y)+2;
 j=2*(*x)+3;
 gotoxy(i,j);
 printf(" ");
}
 
void path_down(int *x, int *y)
{
 int i,j;
 maze[++(*x)][*y]=maze[0][0];
 path[2*(*x-1)+1][2*(*y)]=path[0][0];
 path_local(*x,*y);
 i=4*(*y)+2;
 j=2*(*x)+1;
 gotoxy(i,j);
 printf(" ");
}
  
void path_left(int *x, int *y)
{
 int i,j;
 maze[*x][--(*y)]=maze[0][0];
 path[2*(*x)][2*(*y+1)-1]=path[0][0];
 path_local(*x,*y);
 i=4*(*y)+4;
 j=2*(*x)+2;
 gotoxy(i,j);
 printf(" ");
}
 
void path_right(int *x, int *y)
{
 int i,j;
 maze[*x][++(*y)]=maze[0][0];
 path[2*(*x)][2*(*y-1)+1]=path[0][0];
 path_local(*x,*y);
 i=4*(*y);
 j=2*(*x)+2;
 gotoxy(i,j);
 printf(" ");
}
 
void setxy(int x, int y)
{
 gotoxy(x,y);
 printf(" ");
}
 
void path_local(int x, int y)
{
 int i,j;
 i=4*y+2;
 j=2*x+2;
 gotoxy(i,j);
 printf(" ");
 path[2*x][2*y]=path[0][0];
 flag++;
}
 
void go_up(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 j-=1;
 gotoxy(i,j);
 printf("");
 (*x)--;
 path[*x][*y]='o';
}
 
void go_down(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 j+=1;
 gotoxy(i,j);
 printf("");
 (*x)++;
 path[*x][*y]='o';
}
void go_left(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 i-=2;
 gotoxy(i,j);
 printf("");
 (*y)--;
 path[*x][*y]='o';
}
 
void go_right(int *x,int *y)
{
 int i,j;
 i=2*(*y)+2;
 j=(*x)+2;
 gotoxy(i,j);
 printf(" ");
 i+=2;
 gotoxy(i,j);
 printf("");
 (*y)++;
 path[*x][*y]='o';
}
 
void HideCursor()
{
CONSOLE_CURSOR_INFO cursor_info = {1, 0}; 
SetConsoleCursorInfo(GetStdHandle(STD_OUTPUT_HANDLE), &cursor_info);
}
 
void win()
{
 printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
 "                                       恭喜你,成功了!");
 getch();
}

怎么样,还是蛮简单的吧?

相关文章
|
29天前
|
C++
C++ 语言异常处理实战:在编程潮流中坚守稳定,开启代码可靠之旅
【8月更文挑战第22天】C++的异常处理机制是确保程序稳定的关键特性。它允许程序在遇到错误时优雅地响应而非直接崩溃。通过`throw`抛出异常,并用`catch`捕获处理,可使程序控制流跳转至错误处理代码。例如,在进行除法运算或文件读取时,若发生除数为零或文件无法打开等错误,则可通过抛出异常并在调用处捕获来妥善处理这些情况。恰当使用异常处理能显著提升程序的健壮性和维护性。
42 2
|
29天前
|
算法 C语言 C++
C++语言学习指南:从新手到高手,一文带你领略系统编程的巅峰技艺!
【8月更文挑战第22天】C++由Bjarne Stroustrup于1985年创立,凭借卓越性能与灵活性,在系统编程、游戏开发等领域占据重要地位。它继承了C语言的高效性,并引入面向对象编程,使代码更模块化易管理。C++支持基本语法如变量声明与控制结构;通过`iostream`库实现输入输出;利用类与对象实现面向对象编程;提供模板增强代码复用性;具备异常处理机制确保程序健壮性;C++11引入现代化特性简化编程;标准模板库(STL)支持高效编程;多线程支持利用多核优势。虽然学习曲线陡峭,但掌握后可开启高性能编程大门。随着新标准如C++20的发展,C++持续演进,提供更多开发可能性。
45 0
|
20天前
|
Rust 安全 C++
系统编程的未来之战:Rust能否撼动C++的王座?
【8月更文挑战第31天】Rust与C++:现代系统编程的新选择。C++长期主导系统编程,但内存安全问题频发。Rust以安全性为核心,通过所有权和生命周期概念避免内存泄漏和野指针等问题。Rust在编译时确保内存安全,简化并发编程,其生态系统虽不及C++成熟,但发展迅速,为现代系统编程提供了新选择。未来有望看到更多Rust驱动的系统级应用。
38 1
|
6天前
|
程序员 C++ 容器
C++编程基础:命名空间、输入输出与默认参数
命名空间、输入输出和函数默认参数是C++编程中的基础概念。合理地使用这些特性能够使代码更加清晰、模块化和易于管理。理解并掌握这些基础知识,对于每一个C++程序员来说都是非常重要的。通过上述介绍和示例,希望能够帮助你更好地理解和运用这些C++的基础特性。
21 0
|
1月前
|
算法 C++ 容器
C++标准库中copy算法的使用
C++标准库中copy算法的使用
16 1
|
29天前
|
存储 编译器 C++
打破C++的神秘面纱:一步步带你走进面向未来的编程世界!
【8月更文挑战第22天】C++是一门功能强大但学习曲线陡峭的语言,提供高性能与底层控制。本文通过实例介绍C++基础语法,包括程序结构、数据类型、控制结构和函数。从简单的“Hello, C++!”程序开始,逐步探索变量声明、数据类型、循环与条件判断,以及函数定义与调用。这些核心概念为理解和编写C++程序打下坚实基础,引导你进入C++编程的世界。
31 0
|
1月前
|
算法 搜索推荐 C++
c++常见算法
C++中几种常见算法的示例代码,包括查找数组中的最大值、数组倒置以及冒泡排序算法。
16 0
|
1月前
|
存储 算法
【C算法】编程初学者入门训练140道(1~20)
【C算法】编程初学者入门训练140道(1~20)
|
1月前
|
算法 C++ 容器
【C++算法】双指针
【C++算法】双指针
|
1月前
|
算法 Python
【python】python基于 Q-learning 算法的迷宫游戏(源码+论文)【独一无二】
【python】python基于 Q-learning 算法的迷宫游戏(源码+论文)【独一无二】