深入理解uwsgi和gunicorn网络模型

简介: 前言:       去年10月份建了一个python技术群,到现在为止人数已经涨到700人了。最一开始我经常在群里回应大家的问题,不管是简单还是困难的,我都会根据自己的经验来交流。

前言:

       去年10月份建了一个python技术群,到现在为止人数已经涨到700人了。最一开始我经常在群里回应大家的问题,不管是简单还是困难的,我都会根据自己的经验来交流。 让人新奇的是一些初学者关注最多的话题不是怎么学好python,反而是高并发,高性能这类高大上的话题。

       记得有次几个不懂网络io、io多路复用含义网友,居然在群里吵了有半个小时,说出来的理论实在是让人哭笑不得。 群里当然有人在反驳,后来越聊越欢。 群里不少人在问我 uwsgi、gevent、tornado的一些设计,先前我尽量详细的作答,后来发现问我这些问题的朋友,并没有实际网络编程的经验,而我的回答更偏重于底层的实现,其实这样的解答不利于别人的理解的。我常常自己也在想 如何更好的回答别人的问题,一方面让人听着好懂,另一方面不让人觉得是在装逼。 

       没有人喜欢被别人说装逼,我同样也不喜欢,我是个谦虚善良的人。 我现在算是找到了自己的路数,我在回答问题的时候,习惯性的问别人几个问题,这样能把握好对方的深浅。 记得以前在腾讯的时候,名叫 院长 的前辈总是跟我说一句话,没有场景瞎谈高并发流氓行为。 胡粗理不粗呀,要避免自己纸上谈兵。   


该文章写的有些乱,欢迎来喷 ! 另外文章后续不断更新中,请到原文地址查看更新.     http://xiaorui.cc/?p=4264


上面有点偏远这次的话题,这次主要讲解 uwsgi 、gunicorn的网络方面的设计。我会围绕下面几个问题讲解uwsgi、gunicorn的设计。

uwsgi 、gunicorn 有啥区别?  

uwsgi、gunicorn的Master Worker进程模型?

有这么多worker模型,我们应该怎么选择?

uwsgi、gunicorn作为网关角色的意义?

这类框架怎么组合性能最高 ?


在架构上是这样的,nginx负责动态的转发和静态文件的直接访问,gunicorn和uwsgi作为网关服务用来解析http请求,后面的flask只是个application而已,没有server的服务特征。



先说简单干练的gunicorn讲起吧,下面是gunicorn的启动方式:

通过strace得知 gunicorn 默认的网络模型是 select , 当我们worker 替换成 gevent 后, 改为 epoll 监听模型 .  select 和 epoll之间的区别我们就不再啰嗦了。 

下面是gunicorn 、uwsgi 的 Master Worker的模型,大体实现是这样的。


如果我们的app是flask写得,那么用gevent做worker的意义在于什么?

Gevent worker 它提供了一种机制,让你可以监听到多个事件,epoll wait调用是阻塞的,但是可以设置超时事件,在超时事件内,如果有事件准备好就返回。比如采用epoll事件处理模型,当事件没准备好时,放到epoll里面,事件准备好了,我们就去读写,当读写返回EAGAIN时,我们将它再次加入到epoll里面。这样,只要有事件准备好了,我们就去处理它,当所有fd没有发生读写时,epoll才会阻塞等待。这样,我们就可以并发处理大量的并发了,当然,这里的并发请求,是指未处理完的请求,线程只有一个,所以同时能处理的请求当然只有一个了,只是在请求间进行不断地切换而已,切换也是因为异步事件未准备好,而主动让出的。工作流之间会产生切换的,但这里的切换消耗远没有多线程上下文切换大。

gunicorn根据Master Worker来fork出子进程,Master在这里不用做处理对外的http请求,而用来管理这些子进程,比如 升级、重载配置、kill进程避免oom 等。这些worker(子进程)继承了主进程的listening fd,这时候从accept、parse http protocol、response 都是在一个gevent协程里面的,也就说 在协程池的数目允许下,每个连接就是一个gevent协程。  如果你的app的业务逻辑是阻塞模式的,又没兼容gevent的patch,那么可想而知,结果是同步阻塞了。  

gunicorn框架对外服务的模式下有http、tcp socket和unix domain socket,这跟uwsgi的模式一样一样的。

对于高并发的场景下,如果支持unix domain socket 模式,最少可以省略tcp的计算校验,这样性能有不少的提升。gunicorn wsgi相比uwsgi的协议相比,可以使传输的协议层更加的紧凑。

下面是uwsgi的启动方式:


上面是 uwsgi http 服务模式,但是uwsgi会启动两组端口port, 一个是5000 ,一个是5300x ,  端口5000是我们已知的,这个端口用来直接对外接收请求的,他在构建完一个请求协议包之后,会connect 到 5300x 端口, 平白的多消耗了一些网络io。这种模式是 rep req模型,我能想到的优点是,他避免了因为listen fd事件的到来把其他进程唤醒的问题。 也就是说,只有5000对外,5300x是真正的worker。 端口5000根据一定的算法来选择worker。 5000 和 5300x的数据交互方式是 可压缩可序列化的tcp报文,有兴趣的可以抓包看看。


在内核2.6就早没有accept惊群这个说法了,但是当我们多个进程各自把listen fd放到epoll监听池里面时,其实会造成事件的唤醒,虽然最终只会被一次accept,但平白无故唤醒了多个进程也不是值得骄傲的。 

题外话,nginx是通过多个进程轮流持锁的方式来避免epoll accept唤醒问题。

下面是 pull req 模型.


改成 –socket :5000 ,  只会监听5000 port , 因为uwsgi协议比较特殊,测试起来很是麻烦。 我这里开源了一个uwsgi客户端。uwsgi client http://xiaorui.cc/?p=4205


改成  –socket /path/to/xiaorui.cc.sock ,线上经验表明 unix domain socket 模式要比tcp socket性能有提升的。


uwsgi 和 gunicorn 是长连接么?  怎么测试uwsgi的长连接 ?  uwsgi 长连接实现方法?


gunicorn是长连接的,uwsgi要启用 –http-keepalive 模式才是长连接请求。 不要用curl测试,因为当你curl关闭的时候,已经出发了tcp四次挥手。 你可以根据strace和tcpdump来分析,在curl获取打印数据后,会发起close请求。  正确的测试方法是,你写个python requests请求,当请求完毕后,不要急着退出脚本,加一个sleep等待后再次去请求。 我们会发现连接始终是一个,tcpdump没有抓到建立新连接的报文。  uwsgi、gunicorn如何实现的长连接 ?  不只是在 返回的http加入 Connection:keep-alive 字段就标明是长连接,还需要借助select、epoll这样的io多路复用模型,用来监听各个fd读写事件。 简单说只要server不主动去close(),客户端client也不去close(),既然没有人去close(),这个连接自然就是长连接了,反之就是短连接。  

flask 是长连接么? 我负责的说 是,长连接。既然长连接是借助select、epoll模型来实现,那么为毛flask是阻塞模式,随意加一个 time.sleep(xxx) 就io阻塞了。 

这是Python flask的框架介绍…   Werkzeug 是 Flask的wsgi server ,gunicorn 跟 flask做结合时,gunicorn可以理解为是 flask 的wsgi server。 

Flask is a microframework for Python based on Werkzeug, Jinja 2 and good intentions. And before you ask: It’s BSD licensed!

   以前讲过wsgi server的设计实现,这里就不多扯淡了,有兴趣的可以看看该文http://xiaorui.cc/2016/04/16/%E6%89%93%E9%80%A0mvc%E6%A1%86%E6%9E%B6%E4%B9%8Bwsgi%E5%8D%8F%E8%AE%AE%E7%9A%84%E4%BC%98%E7%BC%BA%E7%82%B9%E5%8F%8A%E6%8E%A5%E5%8F%A3%E5%AE%9E%E7%8E%B0/


    简单说作为 wsgi server 他的意义在于 让我们专心去写web application,而不用专注于网络底层实现。 我们拿 flask 的Werkzeug来说,Werkzeug使用 Thread Local来实现的,所以才会有flask.request 、 flask.g 、 flask.session 这么便利的模块。引用的时候就像使用单例对象一样,但实际上对它们的所有赋值操作都只会影响到当前请求(当前线程),另外生存的周期也仅仅是这次请求而已。Thread Local 模式的实现一定要有一个 Thread Identity 作为标识。  为了测试我写一个测试发包程序,一个完整的http请求报文被切分成好几份,特意缓慢的发给Werkzeug服务端,直到结束,期间另开几个线程用来不断模拟正常的并发请求访问,可以成功获取结果。  接着我们在Flask的业务逻辑里加入io阻塞,发现这时候阻塞了。   通过不断strace追查查明,Werkzeug 在接收http请求和返回response结果的时候是异步非阻塞的。 随着我们单步调试的数据报文的到达,可以看到epoll wait由阻塞变为成功返回。


    我通过阅读gunicorn、uwsgi 的代码得知,他们在单进程单线程下是和Werkzeug一样的。默认情况下,gunicorn会异步非阻塞的积攒tcp报文,通过http协议来解决tcp粘包的问题,当构建出一个完整http包,才会让这些worker来处理下一步的逻辑,也就是业务逻辑。  到此为止,我已经解释了 flask 使用Werkzeug epoll还是会发生阻塞的原因,也解释情况了gunicorn、uwsgi如何处理http请求 。

gunicorn、uwsgi遇到普遍的问题是502 504问题, 一说到502 ,我们知道后端处理过慢需要扩展worker,一说到504,我们知道处理超时,一般调整timeout就可以。那么502,504该问题的根本原因是什么?   socket 内部是有两个队列,一个syn队列,一个是accept队列,这两个队列都在accept()之间就有了。 backlog是syn和accept队列之和,当你后端处理不及时,backlog又到限制时,会出现502,也就是说新的客户端不能建立,因为没有syn的槽位供你三次握手。  504 就很好理解了,处理超时,中断处理,直接范围错误信息。


     Uwsgi、gunicorn 应该如何做选择?  这里需要注意的是 uwsgi http模式一定要慎用,这个rep req模式实在是奇葩呀。试想一想,linux做请求发起时,往大里说一共可以创建65535-1000的连接。Nginx通常是跟uwsgi一台服务器的,那么nginx收到一个请求时,会主动跟uwsgi建立连接,然后uwsgi跟worker又发起连接,那么连接数降到3w的理论值 。  又因为uwsgi转发了一个请求造成时间消耗。

    uwsgi的功能是要比gunicorn丰富的多,通过丰富的配置参数就知道了。 但根据我几个项目的线上测试结果,gunicorn要比uwsgi稳定。 单笔性能的化,gevent性能是最好的。 推荐的配置是 unix domain socket、多进程、gevent协程池 组合。 线程池的方式不太推荐使用,pyhton的线程是内核的pthread线程,在繁多的线程数目下,对比协程的消耗可想而知。


    后面我会依次分析下 uwsgi、gunicorn实现的源码,你会发现这些实现还是很精妙的。


目录
相关文章
|
28天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
102 1
|
1月前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
131 2
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
137 2
|
2月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
443 1
|
3月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
188 4
网络协议与IO模型
|
3月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
132 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
2月前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
110 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
开发者
什么是面向网络的IO模型?
【10月更文挑战第6天】什么是面向网络的IO模型?
27 3