Spark基本的RDD算子之groupBy,groupByKey,mapValues

简介: 1. groupby def groupBy[K: ClassTag](f: T => K): RDD[(K, Iterable[T])] def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Iterable[T])] def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Iterable[T])] groupBy算子接收一个函数,这个函数返回的值作为key,然后通过这个key来对里面的元素进行分组。

1. groupby


def groupBy[K: ClassTag](f: T => K): RDD[(K, Iterable[T])]
def groupBy[K: ClassTag](f: T => K, numPartitions: Int): RDD[(K, Iterable[T])]
def groupBy[K: ClassTag](f: T => K, p: Partitioner): RDD[(K, Iterable[T])]

groupBy算子接收一个函数,这个函数返回的值作为key,然后通过这个key来对里面的元素进行分组。

val a = sc.parallelize(1 to 9, 3)
a.groupBy(x => { if (x % 2 == 0) "even" else "odd" }).collect
//返回的even或者odd字符串作为key来group RDD里面的值,
res42: Array[(String, Seq[Int])] = Array((even,ArrayBuffer(2, 4, 6, 8)), (odd,ArrayBuffer(1, 3, 5, 7, 9)))

2. groupbykey


def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]

这个算子和group类似,不过和它不同的是他不接收一个函数,而是直接将键值对类型的数据的key作为group的key 值。同样的,他也可以接收其他参数比如说partitioner


val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "spider", "eagle"), 2)
val b = a.keyBy(_.length) //将字符串的长度作为key值。
b.groupByKey.collect //根据相同key值来进行group操作

res11: Array[(Int, Seq[String])] = Array((4,ArrayBuffer(lion)), (6,ArrayBuffer(spider)), (3,ArrayBuffer(dog, cat)), (5,ArrayBuffer(tiger, eagle)))

3. mapValues

同基本转换操作中的map,只不过mapValues是针对[K,V]中的V值进行map操作。


val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2)  
val b = a.map(x => (x.length, x))  
b.mapValues("x" + _ + "x").collect  



//结果 
Array( 
(3,xdogx), 
(5,xtigerx), 
(4,xlionx), 
(3,xcatx), 
(7,xpantherx), 
(5,xeaglex) 
)


相关文章
|
28天前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
|
2月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
40 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
2月前
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
31 0
|
2月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
67 0
|
2月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
45 0
|
2月前
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
55 0
|
2月前
|
分布式计算 算法 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
56 0
|
2月前
|
存储 缓存 分布式计算
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
40 4
|
2月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
46 4
|
7月前
|
分布式计算 Shell 开发工具
Spark编程实验二:RDD编程初级实践
Spark编程实验二:RDD编程初级实践
346 1