Machine learning preface

简介: Machine learning PrefaceDefinitionT: TaskE: ExperienceP: PerformanceSequence: T -> E -> PSupervised learningDefinitionGive the right answer...

Machine learning Preface

Definition

  • T: Task
  • E: Experience
  • P: Performance
  • Sequence: T -> E -> P

Supervised learning

Definition

  • Give the right answer to each example of the data set(called training data).

Type

  • Regression: get the continuous values
  • Classification: get the discrete values like 0, 1, 2, 3 and so on

application scenarios

  • Regression: predict the price of the house based on the square, location of the house
    • house price
  • Classification:
    • Tumor prediction
    • Spam filter

Unsupervised learning

Type

  • Cluster algorithm

application scenarios

  • Google news: get lots of related news in the Internet and put them in one set of URL.
  • Social network: find the common friends.
  • Market segmentation: We all know the data, but we don't know the what kinds of market segmentation, so let unsupervised learning to deal with it.
  • Extract human voice from records: you know, there are some noise in these records, we need to get the human voice, so we let cluster algorithm to deal with.

Others

Recommender system

目录
相关文章
|
机器学习/深度学习 人工智能 算法
The 10 Algorithms Machine Learning Engineers Need to Know
The 10 Algorithms Machine Learning Engineers Need to Know
|
传感器 监控 自动驾驶
Machine Learning
Machine Learning
105 0
|
机器学习/深度学习 编解码 算法
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
132 0
《Spiking Neural Networks,the Next Generation of Machine Learning》电子版地址
Spiking Neural Networks,the Next Generation of Machine Learning
80 0
《Spiking Neural Networks,the Next Generation of Machine Learning》电子版地址
《Deep Learning vs.Machine Learning-the essential differences you need to know!》电子版地址
Deep Learning vs.Machine Learning-the essential differences you need to know!
126 0
《Deep Learning vs.Machine Learning-the essential differences you need to know!》电子版地址
|
机器学习/深度学习 算法 Python
Machine Learning-L7-最大熵模型
Machine Learning-L7-最大熵模型
Machine Learning-L7-最大熵模型
|
存储 算法
Machine Learning-L11-KNN
Machine Learning-L11-KNN
Machine Learning-L11-KNN
|
机器学习/深度学习
这就是Machine Learning
这就是Machine Learning
144 0
这就是Machine Learning
|
机器学习/深度学习 存储 资源调度
Optimization of Machine Learning
机器学习就是需要找到模型的鞍点,也就是最优点。因为模型很多时候并不是完全的凸函数,所以如果没有好的优化方法可能会跑不到极值点,或者是局部极值,甚至是偏离。
1310 0
|
搜索推荐 Python 算法
Factorization Machine
Factorization Machine---因子分解机 ①target function的推导 logistics regression algorithm model中使用的是特征的线性组合,最终得到的分割平面属于线性模型,但是线性模型就只能处理线性问题,所以对于非线性的问题就有点难处理了,对于这些复杂问题一般是两种解决方法①对数据本身进行处理,比如进行特征转换,和函数高维扩展等等。
1120 0