自定义 Opcode

简介: 在 FPGA 中通过扩展指令集来加速计算过程,即将某些函数以CPU指令的方式来执行。然后通过将他们用 C 语言进行封装,从而成为标准C库中的一部分。这里通过简单的添加 opcode 的方式来说明自定义 opcode 中对 gcc 的扩展过程。

在 FPGA 中通过扩展指令集来加速计算过程,即将某些函数以CPU指令的方式来执行。然后通过将他们用 C 语言进行封装,从而成为标准C库中的一部分。

这里通过简单的添加 opcode 的方式来说明自定义 opcode 中对 gcc 的扩展过程。

环境准备

  • 设置环境变量
#!/bin/bash

# [1]
# prepare-env: export required environment variables, create folders.
# 在环境变量中设置 RISCV 主工程目录
export RISCV_HOME=~/riscv-home
export RISCV="${RISCV_HOME}/riscv"
export PATH="${PATH}:${RISCV}/bin"
export RISCV_PK="${RISCV}/riscv32-unknown-elf/bin/pk"

# 创建这些目录
mkdir -p "${RISCV_HOME}" "${RISCV}"

echo '[OK] done'
  • 构建 RISCV 工具链
#!/bin/bash

# [2]
# download-repos: clone all repositories to $RISCV_HOME.

if [ -z "${RISCV_HOME}" ]; then
    echo '$RISCV_HOME is undefined; run `source prepare-env`'
    exit 1
fi

dst="${RISCV_HOME}"
echo "destination folder is ${dst}"

# 基础同步代码函数
function riscv-clone {
    repo="${1}"
    revision="${2}"
    shift 2
    git clone -b master $@ "https://github.com/riscv/${repo}" "${dst}/${repo}" &&
        cd "${dst}/${repo}" &&
        git checkout "${revision}" &&
        echo "[OK] ${repo} cloning finished"
}

# 分别同步 riscv-fesvr, riscv-pk, riscv-isa-sim, riscv-opcodes, riscv-tests, riscv-gnu-toolchain 等包
riscv-clone 'riscv-fesvr' '01932a715edd22ee451d86cde38c7c07dc9bfa7e' &&
    riscv-clone 'riscv-pk' '66701f82f88d08d3700d8b0bc5d5306abfd0044f' &&
    riscv-clone 'riscv-isa-sim' '3a4e89322a8c8dac94185812a238f13789ab392f' &&
    riscv-clone 'riscv-opcodes' 'e0abc2255a71afb0236032ae3d92bea26c15716d' && 
    riscv-clone 'riscv-tests' '9e313f30205b8172290831c3af18b0779e9b15f2' &&
    riscv-clone 'riscv-gnu-toolchain' 'f5fae1c27b2365da773816ddcd92f533867f28ec' --recursive && 
    echo '[OK] done'
  • 初始化编译
#!/bin/bash

# [3]
# build-repos: build downloaded repositories.

# 安装依赖包
# Get packages that are required to build the GNU toolchain.
# The list provided by https://github.com/riscv/riscv-gnu-toolchain README.
sudo apt-get install \
    autoconf \
    automake \
    autotools-dev \
    curl \
    libmpc-dev \
    libmpfr-dev \
    libgmp-dev \
    gawk \
    build-essential \
    bison \
    flex \
    texinfo \
    gperf \
    libtool \
    patchutils \
    bc \
    zlib1g-dev \
    device-tree-compiler || exit 1

# 编译工具链
function mk-toolchain {
    cd "${RISCV_HOME}/riscv-gnu-toolchain" &&
        ./configure --prefix="${RISCV}" --with-arch=rv32i &&
        echo 'this can take more than a hour...' &&
        make &&
        echo '[OK] mk-toolchain: done'
}

# 编译 front-end server
function mk-fesvr {
    cd "${RISCV_HOME}/riscv-fesvr" &&
        mkdir -p build &&
        cd build &&
        ../configure --prefix="${RISCV}" &&
        make install &&
        echo '[OK] mk-fesvr: done'
}

# 编译代理 kernel, 及 bootloader
function mk-pk {
    # See issue https://github.com/riscv/riscv-pk/issues/56.
    # Remove '-m32' occurences from Makefile 
    # to fix "error: unrecognized command line option '-m32'".
    cd "${RISCV_HOME}/riscv-pk" &&
        mkdir -p build &&
        cd build &&
        ../configure --prefix="${RISCV}" --host=riscv32-unknown-elf --enable-32bit &&
        sed -i 's/\-m32//g' Makefile &&
        make &&
        make install &&
        echo '[OK] mk-pk: done'
}

# 编译 spike 模拟器
function mk-spike {
    cd "${RISCV_HOME}/riscv-isa-sim" &&
        mkdir -p build &&
        cd build &&
        ../configure --prefix="${RISCV}" --with-fesvr="${RISCV}" &&
        make &&
        sudo make install &&
        echo '[OK] mk-spike: done'
}

# The order matters.
mk-toolchain &&
    mk-fesvr &&
    mk-pk &&
    mk-spike &&
    echo '[OK] done'
  • 测试
#!/bin/bash

# [4]
# check-install: try to find out it installation was successful.

cc='riscv32-unknown-elf-gcc'
cxx='riscv32-unknown-elf-g++'

# 测试 command 命令
function check-cmd {
    name="${1}"
    command -v "${name}" >/dev/null 2>&1 ||
        (echo "${name}: command not found" && exit 1)
    echo "[OK] located ${name}"
}

# 通过spike 模拟器测试执行环境
function check-spike {
    mkdir -p build &&
        ${cc} data/hello.c -O1 -march=rv32im -o build/cc_hello &&
        echo '[OK] C compiler works' &&
        ${cxx} data/hello.cpp -O1 -march=rv32im -o build/cxx_hello &&
        echo '[OK] C++ compiler works' &&
        spike --isa=RV32IM "${RISCV_PK}" build/cc_hello &&
        spike --isa=RV32IM "${RISCV_PK}" build/cxx_hello &&
        echo '[OK] spike works'
}

check-cmd "${cc}" &&
    check-cmd "${cxx}" &&
    check-cmd 'spike' &&
    check-spike &&
    echo '[OK] done'

添加 Opcode

定义新指令

mac(a, b, c)  =>  c := c + (a * b)
  • 创建 riscv/insns/mac.h 文件
    用来描述 mac 指令的功能
// 'M' extension means we require integer mul/div standard extension.
require_extension('M');
// RD = RD + RS1 * RS2
reg_t tmp = sext_xlen(RS1 * RS2);
WRITE_RD(sext_xlen(READ_REG(insn.rd()) + tmp));
  • 添加Opcode
cd "${RISCV_HOME}/riscv-opcodes"
echo -e "mac rd rs1 rs2 31..25=1 14..12=0 6..2=0x1A 1..0=3\n" >> opcodes
make install

# 将 mac 指令追加到 riscv_insn_list 中去
sed -i 's/riscv_insn_list = \\/riscv_insn_list = mac\\/g' \
    "${RISCV_HOME}/riscv-isa-sim/riscv/riscv.mk.in"
  • 重新编译spike模拟器
cd "${RISCV}/riscv-isa-sim/build"
sudo make install
  • 测试程序编写
#include <stdio.h>
// Needed to verify results.
int mac_c(int a, int b, int c) {
    a += b * c; // Semantically, it is "mac"
    return a;
}

// Should not be inlined, because we expect arguments
// in particular registers.
__attribute__((noinline))
int mac_asm(int a, int b, int c) {
    // 0x02C5856B 为 mac 的 16进制 执行编码
    asm __volatile__ (".word 0x02C5856B\n");
    return a;
}
int main(int argc, char** argv) {
    int a = 2, b = 3, c = 4;
    printf("%d =?= %d\n", mac_c(a, b, c), mac_asm(a, b, c));
}
  • 编译执行
riscv32-unknown-elf-gcc test_mac.c -O1 -march=rv32im -o test_mac
spike --isa=RV32IM "${RISCV_PK}" test_mac

输出: 14 =?= 14

执行格式说明

  • mac & mul
# file "riscv-opcodes/opcodes"
#                                differs
#                                |
#                                v
mac rd rs1 rs2 31..25=1 14..12=0 6..2=0x1A 1..0=3
mul rd rs1 rs2 31..25=1 14..12=0 6..2=0x0C 1..0=3
#   ^  ^   ^   ^        ^        ^         ^
#   |  |   |   |        |        |         |
#   |  |   |   |        |        |         |
#   |  |   |   |        |        |         also opcode 3 bits
#   |  |   |   |        |        opcode 5 bits
#   |  |   |   |        funct3 3 bits
#   |  |   |   funct7 7 bits
#   |  |   rs2 (src2) 5 bits
#   |  rs1 (src1) 5 bits
#   dest 5 bits
  • 实际执行
# Encoding used for "mac a0, a1, a2"
0x02C5856B [base 16]
== 
10110001011000010101101011 [base 2]
== 对齐后
00000010110001011000010101101011 [base 2]
# Group by related bit chunks:
0000001 01100 01011 000 01010 1101011
^       ^     ^     ^   ^     ^
|       |     |     |   |     |
|       |     |     |   |     opcode (6..2=0x0C 1..0=3)
|       |     |     |   dest (10 : a0)
|       |     |     funct3 (14..12=0)
|       |     src1 (11 : a1)
|       src2 (12 : a2)
funct7 (31..25=1)

参考

RISC-V: custom instruction and its simulation
gnu-riscv32_ext
Adding the custom instruction to spike ISA simulator

目录
相关文章
|
4月前
bpf_func_id是如何产生的?
bpf_func_id是如何产生的?
8086 汇编笔记(九):call 指令 和 ret 指令
8086 汇编笔记(九):call 指令 和 ret 指令
|
6月前
switch的使用细节
switch的使用细节
56 0
|
8月前
|
程序员
深入理解汇编:平栈、CALL和RET指令详解
深入理解汇编:平栈、CALL和RET指令详解
156 1
|
8月前
|
存储 程序员 开发者
【汇编】其他转移指令、call指令和ret指令
【汇编】其他转移指令、call指令和ret指令
249 2
|
索引
UVC 基础学习(4):VideoContrl Interface 及其描述符介绍
所有信息整理来源于UVC 官方spec 翻译理解及内核源码做参考
800 0
|
编解码 C++ 索引
UVC 基础学习(5):VideoStream Interface 描述符介绍
今天我们继续学习UVC的接口描述符:VideoStream 。 VideoStream 接口描述符是整个UVC设备最重要的组成之一,和VideoControl一样,其也包含标准接口和特殊类接口。
925 0
|
开发者
cobrautils 使用反射获取 flag 配置, 支持指针字段
cobrautils 使用反射获取 flag 配置, 支持指针字段
132 0
cobrautils 使用反射获取 flag 配置, 支持指针字段
|
应用服务中间件 nginx 索引
ngx_lua_API 指令详解(二)ngx.re.match/find/gmatch/sub/gsub指令集合
1、先来个官方的ngx.re.match location /ngx_re_match { default_type text/html; content_by_lua_block { local m, err = ngx.
2917 0