网络编程基础篇

简介: 传统的BIO编程,服务器的主线程需要先阻塞,然后等待客户端的请求才去创建线程执行。一般分为两个部分,client和server。
img_a4ad0a96496e41bcbcb3de3dc5e71322.png

img_fefd821f5e25fd2cb6ba5e6e8f1d2373.png

img_bd89b336aeb75e7badbea0937dccf406.png

img_da431136228400be986917aeb33cd07a.png

传统的BIO编程,服务器的主线程需要先阻塞,然后等待客户端的请求才去创建线程执行。一般分为两个部分,client和server。在网络良好的情况下,一般没有什么问题,但是网络不好的情况,会导致效率很低。

Server.java

package bhz.bio;

import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;

public class Server {

    final static int PROT = 8765;
    
    public static void main(String[] args) {
        
        ServerSocket server = null;
        try {
            server = new ServerSocket(PROT);
            System.out.println(" server start .. ");
            while(true){
                //进行阻塞
                Socket socket = server.accept();
                //新建一个线程执行客户端的任务
                new Thread(new ServerHandler(socket)).start();
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if(server != null){
                try {
                    server.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            server = null;
        }   
    }
}

Client.java

package bhz.bio;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.Socket;

public class Client {

    final static String ADDRESS = "127.0.0.1";
    final static int PORT = 8765;
    
    public static void main(String[] args) {
        
        Socket socket = null;
        BufferedReader in = null;
        PrintWriter out = null;
        
        try {
            socket = new Socket(ADDRESS, PORT);
            in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
            out = new PrintWriter(socket.getOutputStream(), true);
            
            //向服务器端发送数据
            out.println("接收到客户端的请求数据...");
            String response = in.readLine();
            System.out.println("Client: " + response);
            
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if(in != null){
                try {
                    in.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            if(out != null){
                try {
                    out.close();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
            if(socket != null){
                try {
                    socket.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            socket = null;
        }
    }
}

ServerHandler.java

package bhz.bio;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.Socket;

public class ServerHandler implements Runnable{

    private Socket socket ;
    
    public ServerHandler(Socket socket){
        this.socket = socket;
    }
    
    @Override
    public void run() {
        BufferedReader in = null;
        PrintWriter out = null;
        try {
            in = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));
            out = new PrintWriter(this.socket.getOutputStream(), true);
            String body = null;
            while(true){
                body = in.readLine();
                if(body == null) break;
                System.out.println("Server :" + body);
                out.println("服务器端回送响的应数据.");
            }
            
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if(in != null){
                try {
                    in.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            if(out != null){
                try {
                    out.close();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
            if(socket != null){
                try {
                    socket.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            socket = null;
        }   
    }
}
img_b56161ac8e2272e5ccecddf35715e8f3.png

伪异步IO一般都是通过线程池来实现的,它的效率比传统的网络IO要高,它是异步执行的。代码就是比上面的代码多了一个HandlerExecutorPool.java,而且Server.java也改写了一下。
HandlerExecutorPool.java

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class HandlerExecutorPool {

    private ExecutorService executor;
    public HandlerExecutorPool(int maxPoolSize, int queueSize){
        this.executor = new ThreadPoolExecutor(
                Runtime.getRuntime().availableProcessors(),
                maxPoolSize, 
                120L, 
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<Runnable>(queueSize));
    }
    
    public void execute(Runnable task){
        this.executor.execute(task);
    }   
}

Server.java

public class Server {

    final static int PORT = 8765;

    public static void main(String[] args) {
        ServerSocket server = null;
        BufferedReader in = null;
        PrintWriter out = null;
        try {
            server = new ServerSocket(PORT);
            System.out.println("server start");
            Socket socket = null;
            HandlerExecutorPool executorPool = new HandlerExecutorPool(50, 1000);
            while(true){
                socket = server.accept();
                executorPool.execute(new ServerHandler(socket));
            }
            
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if(in != null){
                try {
                    in.close();
                } catch (Exception e1) {
                    e1.printStackTrace();
                }
            }
            if(out != null){
                try {
                    out.close();
                } catch (Exception e2) {
                    e2.printStackTrace();
                }
            }
            if(server != null){
                try {
                    server.close();
                } catch (Exception e3) {
                    e3.printStackTrace();
                }
            }
            server = null;              
        }
    }
}

NIO编程

nio编程的核心是缓冲区,也就是Buffer对象,而传统的IO是流,也就是Stream对象。因为nio编程的操作比较繁琐,所以一般都是通过netty等网络编程框架来实现网络编程。


img_149e1a1046447c77f624d976581dd129.png

img_0d895d03fea9bb13d3a964f78d827082.png

img_d1d447c032f5a1c3f9bdcfdf07b81389.png

img_2e2e01133d7631033deb77f101424daa.png

img_2ec85214cfc247725cca818710a9cbf5.png

AIO编程

img_25dd2a6b16fcdb9ac48a45f885fc5008.png
目录
相关文章
|
9天前
|
数据采集 人工智能 安全
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
305 164
|
3天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
318 155
|
12天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
873 6
|
5天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
258 113

热门文章

最新文章