Java并发编程之线程创建和启动(Thread、Runnable、Callable和Future)

简介: 这一系列的文章暂不涉及Java多线程开发中的底层原理以及JMM、JVM部分的解析(将另文总结),主要关注实际编码中Java并发编程的核心知识点和应知应会部分。说在前面,Java并发编程的实质,是线程对象调用start方法启动多线程,而线程对象则必须是Thread类或其子类实现。

这一系列的文章暂不涉及Java多线程开发中的底层原理以及JMM、JVM部分的解析(将另文总结),主要关注实际编码中Java并发编程的核心知识点和应知应会部分。

说在前面,Java并发编程的实质,是线程对象调用start方法启动多线程,而线程对象则必须是Thread类或其子类实现。Runnable和Callable的作用类似于Comparable、Serializable,是用于被并发的类实现的接口,从而使得Thread类可以在初始化时传入这个被并发的类。此是大前提。本文从多线程实现和启动出发,对这些类或接口予以说明。

Thread

通过Thread的子类创建多线程的步骤如下:

1. 创建Thread的子类,并重写run()方法,该方法即为线程执行体。

2. 创建Thread子类的对象,即为线程对象。

3. 调用线程对象的start()方法启动线程。

 1 public class TestThread extends Thread{
 2     
 3     public TestThread(String name) {
 4         setName(name);
 5     }    
 6     @Override
 7     public void run() {
 8         while(!interrupted())
 9             System.out.println(getName() + "线程执行了");
10     }    
11     public static void main(String[] args) {
12         
13         TestThread t1 = new TestThread("first");
14         TestThread t2 = new TestThread("second");
15         //setDaemon()设置线程为守护线程
16 //        t1.setDaemon(true);
17 //        t2.setDaemon(true);        
18         t1.start();
19         t2.start();        
20         t1.interrupt();
21     }
22 }

Runnable

需要并发执行的类,可以通过实现Runnable接口,作为Thread的Target来创建线程对象。

 1 public class TestRunnable implements Runnable{
 2 
 3     @Override
 4     public void run() {
 5         while(true) {
 6             System.out.println("thread running...");
 7             try {
 8                 Thread.sleep(1000);
 9             } catch (InterruptedException e) {
10                 e.printStackTrace();
11             }
12         }
13     }
14     
15     public static void main(String[] args) {
16         //传入TestRunnable对象作为Target, 开启线程
17         Thread t = new Thread(new TestRunnable());
18         t.start();
19         //采用匿名内部类的方式创建和启动线程
20         new Thread() {
21             @Override
22             public void run() {
23                 System.out.println("Thread的匿名内部类");
24             }
25         }.start();
26         //父类采用匿名实现Runnable接口, 并由子类继承
27         new Thread(new Runnable() {
28             
29             @Override
30             public void run() {
31                 System.out.println("父类的线程");
32             }
33         }) {
34             @Override
35             public void run() {
36                 System.out.println("子类的线程");
37             }
38         }.start();        
39     }
40 }

Callable和Future

Java5开始提供了Callable接口,用于现有多线程开发的强力补充。Callable接口提供一个call()方法来构造线程执行体。

1. call()方法可以有返回值

2. call()方法可以声明抛出异常

因此Callable接口没有继承Runnable接口,不能直接作为Thread类的Target来构造线程对象,所以Java5提供了Future接口来代表call方法的返回值。

Future提供了FutureTask实现类,该实现类实现了Future接口和Runnable接口,像桥梁一样把线程执行体和线程对象连接了起来。

Future接口提供了若干公共方法来操作Callable任务:

  • boolean cancel(boolean mayInterruptIfRunning): 试图取消Future里关联的Callable任务
  • V get():返回Callable任务里call方法的返回值。调用该方法会导致阻塞,必须等子线程完成后才得到返回值
  • V get(long timeout, TimeUnit unit):最多阻塞timeout和unit指定的时间,超时将抛出TimeoutException异常
  • boolean isCancelled():Callable任务正常完成前被取消,则返回true
  • boolean isDone():Callable任务已完成,则返回true

创建并启动有返回值的线程步骤如下:

1. 创建Callable接口的实现类,并实现call方法作为线程执行体,再创建类的实例。Java8中可通过Lambda表达式进行。

2. 使用FutureTask类来包装Callable实现类的对象

3. 使用FutureTask作为Thread对象的target

4. 使用FutureTask对象的get方法获取子线程执行后的返回值

Callable接口和FutureTask实现类的底层是基于接口回调技术实现,具体可参考:基于接口回调详解JUC中Callable和FutureTask实现原理

 1 public class TestCallable implements Callable<Integer>{
 2     //实现Callable并重写call方法作为线程执行体, 并设置返回值1
 3     @Override
 4     public Integer call() throws Exception {
 5         System.out.println("Thread is running...");
 6         Thread.sleep(3000);
 7         return 1;
 8     }
 9     
10     public static void main(String[] args) throws InterruptedException, ExecutionException {
11         //创建Callable实现类的对象
12         TestCallable tc = new TestCallable();
13         //创建FutureTask类的对象
14         FutureTask<Integer> task = new FutureTask<>(tc);
15         //把FutureTask实现类对象作为target,通过Thread类对象启动线程
16         new Thread(task).start();    
17         System.out.println("do something else...");
18         //通过get方法获取返回值
19         Integer integer = task.get();    
20         System.out.println("The thread running result is :" + integer);    
21     }
22 }

总结一下,虽然继承Thread类的开发方式相对简单,但因为Java单继承的限制,一般建议通过实现Runnable或Callable接口来创建并启动多线程。

目录
相关文章
|
7天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
7天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
24 3
|
8天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
11天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
21 2
|
2月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
51 1
C++ 多线程之初识多线程
|
2月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
23 3
|
2月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
20 2
|
2月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
34 2
|
2月前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
39 1
|
2月前
|
安全 Java 开发者
Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用
本文深入解析了Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用。通过示例代码展示了如何正确使用这些方法,并分享了最佳实践,帮助开发者避免常见陷阱,提高多线程程序的稳定性和效率。
42 1