Python机器学习(一):kNN算法

简介: 这段时间用opencv中的机器学习算法做了一下目标检测,效果还是不错的。但都是按照命令和库进行调用,基本对我来说是个黑盒子。固然工程师要会用工具,但如果不深入理解内部实现,是很难进步的。

这段时间用opencv中的机器学习算法做了一下目标检测,效果还是不错的。但都是按照命令和库进行调用,基本对我来说是个黑盒子。固然工程师要会用工具,但如果不深入理解内部实现,是很难进步的。所以我打算花上一些时间(可能两个月以上)来学习一下机器学习的基本概念,并且用python语言去实现一些经典的算法,希望自己能坚持下去吧~

img_ec51ed8390c536dcb3bc997bd58e443a.png
k-Nearest Neighbors
1.简介

kNN算法可以说是机器学习中最简单的一种算法了。它思想极其简单,应用数学知识很少,并且效果相对于它的复杂程度来说极其地好,许多问题都可以用它来解决。它的思想用上面的一张图就可以解释清楚。它的本质是让输入与给定的数据集进行距离的计算。如果最近的点大部分为某一类(比如说是A),则判定为A类。kNN中的k,就是跟输入比较的点的数量。这个是作为算法的一个参数。当然距离的计算方法有很多种,比如说欧拉距离

img_cbb5b334070d589446b7d9426b7b3eea.png
欧拉距离

多维的情况可以如下进行推导
img_dc96d77673d725c564c9c1629fc38739.png
三个维度

也可以使用明科夫斯基距离,其中p成为了算法的一个参数
img_36236a4739468461a66eaa5b89cd69b8.png
明科夫斯基距离

2.算法实现

算法大概可以用python进行封装成这个样子

"""
Created by 杨帮杰 on 9/25/18
Right to use this code in any way you want without warranty,
support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Assication: SCAU 华南农业大学
"""

import numpy as np
from math import  sqrt
from collections import  Counter


class KNNClassifier:

    def __init__(self,k):
        assert k>=1,"k must be valid"
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):
        """根据训练数据集X_train和y_train训练kNN分类器"""
        assert  X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"
        assert self.k <= X_train.shape[0], \
            "the size of X_train must be at least k"

        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self, X_predict):
        """给定待预测数据集X_predict, 返回表示X_predict的结果向量"""
        assert self._X_train is not None and self._y_train is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == self._X_train.shape[1], \
            "the feature number of X_predict must be equal to X_train"

        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self, x):
        """给定单个待预测数据x,返回x的预测结果值"""
        assert x.shape[0] == self._X_train.shape[1], \
            "the feature number of x must be equal to X_train"

        distances = [sqrt(np.sum((x_train - x) ** 2))
                     for x_train in self._X_train]
        nearest = np.argsort(distances)

        topK_y = [self._y_train[i] for i in nearest[:self.k]]
        votes = Counter(topK_y)

        return votes.most_common(1)[0][0]

    def __repr__(self):
        return "KNN(k=%d)" % self.k

可以看到,类中的fit方法也就是算法的训练过程什么都没干,就是把成员赋值。所以说,kNN是一个不需要训练模型的算法,或者说训练集本身就是模型。

python的机器学习库sciki-learn中,可以进行以下的方法进行调用

"""
Created by 杨帮杰 on 9/25/18
Right to use this code in any way you want without warranty,
support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Assication: SCAU 华南农业大学
"""

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

# 获得鸢尾花的数据集
iris = datasets.load_iris()

x = iris.data
y = iris.target

# 测试集与训练集分离,测试集为20%的总数据
X_train, X_test, y_train, y_test = \
    train_test_split(iris.data, iris.target, test_size=0.2)

# 对数据进行归一化处理
standarScaler = StandardScaler()
standarScaler.fit(X_train)

X_train_std = standarScaler.transform(X_train)
X_test_std = standarScaler.transform(X_test)

# 模型训练和测试
knn_clf = KNeighborsClassifier(n_neighbors=4)
knn_clf.fit(X_train_std,y_train)
score = knn_clf.score(X_test_std, y_test)

print(score)

结果如下。可以看到对于简单的多分类问题kNN算法有着很好的效果。


img_7ce379086a300c9acd67665404840236.png
训练准确率
3.需要注意的细节
  • 为了验证模型训练的结果,往往需要将数据分为训练集和测试集。模型训练之后将模型运用到测试集中,如果效果不好则说明参数和算法本身需要调整。

  • 机器学习中参数分为超参数模型参数。超参数是算法在实际运用中的参数,模型参数是算法在训练模型时需要的参数。kNN没有模型参数,而k值是典型的超参数。

  • 参数的度量单位不同,会对结果产生极大的影响。所以我们需要对数据映射到统一尺度,即归一化。其中归一化分为最值归一化和方差归一化。一般使用方差归一化

4.算法优缺点

优点:思想简单,实现起来比较容易,在多分类问题上效果很好
缺点:效率低下。如果有m个样本和n个特征,则算法复杂度为O(m*n)。当训练数据比较多的时候,可以想象速度有多感人。而且结果不具有可解释性。

References:
Python3 入门机器学习 经典算法与应用 —— liuyubobobo
机器学习实战 —— Peter Harrington

目录
相关文章
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
172 4
|
29天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
160 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
19天前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
45 14
|
2月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
69 2
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
69 1
|
3月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
62 0
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
490 0
|
9月前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
239 0
|
4月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
82 5
|
4月前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
328 3