Python机器学习(三):梯度下降法

简介: 梯度下降法不是一种机器学习方法,而是一种基于搜索的最优化方法,它的作用的最小化一个损失函数。相应地,梯度上升可以用于最大化一个效用函数。本文主要讲解梯度下降。

梯度下降法不是一种机器学习方法,而是一种基于搜索的最优化方法,它的作用的最小化一个损失函数。相应地,梯度上升可以用于最大化一个效用函数。本文主要讲解梯度下降。

img_2aa695b2741172d7d48b43477c359a34.png
假设损失函数为凸函数

1.批量梯度下降

以线性回归为例子,梯度下降法就是不断更新Θ,每次更新的大小就是一个常数乘上梯度。其中这个常数η称为学习率(Learning Rate)

img_b25a904e15eb8627f0095533320d12a3.png
η 为 Learning Rate

img_2d27e5f3f3567e7da25ad100b49feded.png
多元线性回归中的梯度下降

img_d9c123a017b0907abb5827d564ebde57.png
求梯度

二元时可以把变化趋势图绘制出来。每一个箭头代表一次迭代。


img_b8243d2acb21fd51d5453c981b2e26d4.png
圆圈为等高线,中间的损失比较小

将梯度的每一项写成向量形式
img_d11d351de9bff09b8ab1f1b1fb3dc42c.png
写成向量形式
img_82e8280a3d05c153b2c15468b8bd49fe.png
为了美观进行变换

同样的,为了加快训练速度,可以将计算过程向量化


img_eaec94db7006b108838c0af03ca130f3.png
X0 恒等于 1

根据之前编写的LinearRegression类,可以用python封装成这种形式

"""
Created by 杨帮杰 on 9/29/18
Right to use this code in any way you want without
warranty, support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Association: SCAU 华南农业大学
"""

class LinearRegression:

    def __init__(self):
        """初始化Linear Regression模型"""
        self.coef_ = None
        self.intercept_ = None
        self._theta = None

    def fit_normal(self, X_train, y_train):
        """根据训练数据集X_train, y_train训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def fit_gd(self, X_train, y_train, eta = 0.01, n_iters = 1e4):
        """根据训练数据集X_train, y_train,使用梯度下降法训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        def J(theta, X_b, y):
            try:
                return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
            except:
                return float('inf')

        def dJ(theta, X_b, y):
            # res = np.empty(len(theta))
            # res[0] = np.sum(X_b.dot(theta) - y)
            # for i in range(1, len(theta)):
            #     res[i] = (X_b.dot(theta) - y).dot(X_b[:, i])
            # return res * 2 / len(X_b)
            # 进行向量化
            return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(X_b)

        def gradient_descent(X_b, y, inital_theta, eta, n_iters = 1e4, epsilon = 1e-8):

            theta = inital_theta
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = dJ(theta, X_b, y)
                last_theta = theta
                theta = theta - eta*gradient
                if(abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
                    break
                cur_iter += 1

            return  theta

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = zeros(X_b.shape[1])
        self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self


    def predict(self, X_predict):
        """给定待预测数据集X_predict, 返回表示X_predict的结果向量"""
        assert self.interception_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"

        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])

        return X_b.dot(self._theta)

    def __repr__(self):
        return "LinearRegression()"

2.随机梯度下降

上面介绍的梯度下降是批量梯度下降(Batch Gradient Descent)。相对地,有另一种方法叫做随机梯度下降(Stochastic Gradient Descent),本质就是随机地选取一个样本点进行一次迭代,然后再随机地选取一个样本点继续迭代。这样做的优势就是——快!

img_f6c72d3b5d8cb1f5d9724048850a77f0.png
随机梯度下降

相对于批量梯度下降,随机梯度下降每一次迭代不一定会使损失变小。从统计的意义上讲,他会不断地向settle point附近逼近。实际情况中,往往在极小值附近会有比较大的抖动,而如果η选取过小,前面的迭代学习速度又会过慢。所以,我们在使用随机梯度下降的时候,会使用随着迭代次数而变化的learning rate,如下。

img_cf5020e35231ffc376a3366c868d9e50.png
i_iters为当前的迭代次数

类似地,将下面的方法定义放到LinearRegression类中即可

    def fit_sgd(self, X_train, y_train, n_iters = 1e4, t0 = 5, t1 = 50):
        """根据训练数据集X_train, y_train, 使用随机梯度下降法训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        def dJ_sgd(theta, X_b_i, y_i):
            return X_b_i * (X_b_i.dot(theta) - y_i) * 2

        def sgd(X_b, y, inital_theta, n_iters, t0 = 5,t1 = 50):

            def learning_rate(t):
                return t0 / (t + t1)

            theta = inital_theta
            m = len(X_b)

            for cur_iter in range(n_iters):
                indexes = np.random.permutation(m)
                X_b_new = X_b[indexes]
                y_new = y[indexes]
                for i in range(m):
                    gradient = dJ_sgd(theta, X_b_new[i], y_new[i])
                    theta = theta - learning_rate(cur_iter * m + i) * gradient

            return theta

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        initial_theta = zeros(X_b.shape[1])
        self._theta = sgd(X_b, y_train, initial_theta, n_iters, t0, t1)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

sciki-learn中可以这样调用SGDRegression

"""
Created by 杨帮杰 on 10/3/18
Right to use this code in any way you want without
warranty, support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Association: SCAU 华南农业大学
"""

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler

# 加载波士顿房价的数据集
boston = datasets.load_boston()

# 清除一些不合理的数据
X = boston.data
y = boston.target

X = X[y < 50.0]
y = y[y < 50.0]

# 分离出测试集
X_train, X_test, y_train, y_test = train_test_split(X, y)

# 数据归一化
standardScaler = StandardScaler()
standardScaler.fit(X_train)
X_train_standard = standardScaler.transform(X_train)
X_test_standard = standardScaler.transform(X_test)

# 训练模型
sgd_reg = SGDRegressor(max_iter=100)
sgd_reg.fit(X_train_standard, y_train)

# 打印结果
print(sgd_reg.coef_)
print(sgd_reg.intercept_)
print(sgd_reg.score(X_test_standard, y_test))

结果如下


img_09a4f8ca5cb8d29753b34e202da372b3.png
结果要比批量梯度下降要差一些

3.总结

除了批量梯度下降法和随机梯度下降法之外,还有小批量梯度下降法(Mini-Batch gradient descent),方法是随机选取一小批样本进行迭代,原理差不多,这里不再赘述。

相对于使用正规方程解的方式解决线性回归问题,使用梯度下降可以在特征数量比较多的时候有更快的训练速度(比如图像识别)。有的机器学习算法只能使用梯度下降进行优化。

相对于批量梯度下降法,随机梯度下降法的特点:

  • 能够跳出局部最优解
  • 更快的运行速度
  • 结果一般会稍差

损失函数不一定有唯一的极小值点(不一定是凸函数),这时候的解决方案有:

  • 多次运行,随机化初始点
  • 将初始点的位置作为一个超参数

References:
Python3 入门机器学习 经典算法与应用 —— liuyubobobo
机器学习实战 —— Peter Harrington

目录
相关文章
|
2天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
11 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
12天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
20 3
|
2天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
8 0
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
12 0
|
4月前
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
157 0
|
5天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从零基础到实战应用
【9月更文挑战第15天】本文将引导读者从零开始学习Python编程,通过简单易懂的语言和实例,帮助初学者掌握Python的基本语法和常用库,最终实现一个简单的实战项目。文章结构清晰,分为基础知识、进阶技巧和实战应用三个部分,逐步深入,让读者在学习过程中不断积累经验,提高编程能力。
|
1天前
|
数据可视化 Python
Python编程中的数据可视化技术
【9月更文挑战第19天】在数据驱动的时代,将复杂的数据集转化为直观易懂的视觉表达至关重要。本文将深入探索Python中的数据可视化库,如Matplotlib和Seaborn,并指导读者如何运用这些工具来揭示数据背后的模式和趋势。文章不仅会介绍基础图表的绘制方法,还将讨论高级技巧以提升图表的信息丰富度和吸引力。
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索Python的奥秘:从基础到进阶的编程之旅
在这篇文章中,我们将深入探讨Python编程的基础知识和进阶技巧。通过清晰的解释和实用的示例,无论您是编程新手还是有经验的开发者,都能从中获得有价值的见解。我们将覆盖从变量、数据类型到类和对象的各个方面,助您在编程世界里游刃有余。
23 10
|
2天前
|
人工智能 数据挖掘 开发者
Python编程入门:从基础到实战
【9月更文挑战第18天】本文将带你走进Python的世界,从最基本的语法开始,逐步深入到实际的项目应用。无论你是编程新手,还是有一定基础的开发者,都能在这篇文章中找到你需要的内容。我们将通过详细的代码示例和清晰的解释,让你轻松掌握Python编程。
15 5
|
4天前
|
存储 机器学习/深度学习 数据挖掘
深入浅出:Python编程入门与实践
【9月更文挑战第16天】本文以“深入浅出”的方式,引领读者步入Python编程的世界。从基础语法到实际应用,我们将一步步探索Python的魅力所在。无论你是编程新手,还是希望拓展技能的老手,这篇文章都将为你提供有价值的信息和指导。通过本文的学习,你将能够编写出简单而实用的Python程序,为进一步深入学习打下坚实的基础。让我们一起开始这段编程之旅吧!