Python机器学习(四):PCA 主成分分析

简介: 主成分分析法是一个非监督的机器学习算法,主要用于数据的降维。通过降维,可以发现更便于人类理解的特征。使数据映射到另一个轴上求解目标主成分分析的步骤:对样本进行demean处理(使所有样本的均值为0)取一个轴的方向 w = (w1,w2.

主成分分析法是一个非监督的机器学习算法,主要用于数据的降维。通过降维,可以发现更便于人类理解的特征。


img_8da3b940de81570869f24622bec7d797.png
使数据映射到另一个轴上

求解目标

主成分分析的步骤:

  1. 对样本进行demean处理(使所有样本的均值为0)
  2. 取一个轴的方向 w = (w1,w2...,wn),使我们的样本,映射到w之后,使下式最大


    img_d835db8a82540b1c0fdc41a744ea247a.png
    均方差

由于均值为0,则只需要使下式最大

img_4a93fd87c93274b9ff1cde32902f32fc.png
等价

映射的过程可以如下示意

img_30b8f1115a5338dccc4c8a1316ecb512.png
映射过程

w为单位向量,则有

img_4755de1c89768926024bff53e60d4f21.png
向量点乘

则最终目标为求取一个w,使得下式最大

img_d33f9c46eeb8348e789bb220fda06462.png
目标函数

上式中为向量相乘,假设数据有n个维度,展开来是这个样子


img_f89eaa7b326cf72dc93be7d739a57af1.png
展开以便理解

那么,这就变成了一个目标函数的最优化问题,可以使用梯度上升法解决

这个过程看起来跟线性回归很像,其实是不同的,需要注意


img_fb96f5f83c00b758b8762a49c957f3ea.png
想想其中的区别

梯度上升

梯度上升的过程与梯度下降是类似地,需要先求导

img_daf25cf1cda7583d1c7b66af868b667c.png
沿着各个轴求导

像前面一样,可以化为矩阵运算的形式。设X为这样的矩阵

img_1da64329bbe222cb6e427e6b4804ca7e.png
构造矩阵X

则求导可以写成这样的形式。这里就不推导了

img_d92dfd7e735a90c94ef8da1d17f389e9.png
矩阵运算

整理一下就是这个样子

img_997c2f51d0658c5dc6c4db151362b484.png
最终结果

求取n个主成分

上面的操作中求取w的是第一个主成分,称为第一主成分。如果要求取第二主成分,则需要将数据在第一个主成分上的分量去掉,得到的数据再求取主成分,就得到了第二主成分。

img_c577459b19fbfdee465ec1fa96bb0b0b.png
绿色的向量就是第二主成分的数据

比如说有这么一个数据集

img_cffb338cdda0875d051cc23ce1bd5248.png
使用numpy生成一个数据集

找到第一主成分的方向w1。将数据在第一主成分上的分量去掉,得到的数据如下。再求取一次主成分,就得到了第二主成分的方向。


img_626f9ccd0bd1c2fc48f48a7054ccf7a9.png
第二个主成分的数据

假设我们找到了k个主成分的方向,如果想将数据从n维映射到k维(n>k),则可以如下进行。令Wk为计算出的k个主成分的方向。


img_8023b45b97dbf04235365d80426118ee.png
图没弄好

则可以进行矩阵运算进行降维。X有m个样本n个方向,映射后有m个样本k个方向


img_ff4a96f1c8c88d18f5bfbee09781ed2d.png
想象一下

同样,可以将映射到低维的数据重映射到高维,但是会损失一些信息,结果跟原来是不一样的

img_064a55976ab2d24c12bb0bd01db00f20.png
重映射

编程实现

"""
Created by 杨帮杰 on 11/4/2018
Right to use this code in any way you want without
warranty, support or any guarantee of it working
E-mail: yangbangjie1998@qq.com
Association: SCAU 华南农业大学
"""
import numpy as np

class PCA:

    def __init__(self, n_components):
        """初始化PCA"""
        assert n_components >= 1, "n_components must be valid"
        self.n_components = n_components
        self.components_ = None

    def fit(self, X, eta=0.01, n_iters=1e4):
        """获得数据集的前n个主成分"""
        assert self.n_components <= X.shape[1], \
            "n_components must not be greater than the feature number of X"

        def demean(X):
            return X - np.mean(X, axis=0)

        def f(w, X):
            return np.sum((X.dot(w) ** 2)) / len(X)

        def direction(w):
            return w / np.linalg.norm(w)

        def first_components(X, initial_w, eta=0.01, n_iters=1e4, epsilon=1e-8):
            w = direction(initial_w)
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = df(w, X)
                last_w = w
                w = w + eta*gradient
                w = direction(w)
                if(abs(f(w, X) - f(last_w, X)) < epsilon):
                    break
                cur_iter += 1

            return w

        X_pca = demean(X)
        self.components_ = np.empty(shape=(self.n_components, X.shape[1]))
        for i in range(self.n_components):
            initial_w = np.random.random(X_pca.shape[1])
            w = first_components(X_pca, initial_w, eta, n_iters)
            self.components_[i,:] = w
            X_pca = X_pca - X_pca.dot(w).reshape(-1,1) * w

        return self

    def transform(self, X):
        """将给定的X,映射到各个主成分分量中"""
        assert X.shape[1] == self.components_.shape[1]

        return X.dot(self.components_.T)

    def inverse_transform(self, X):
        """将给定的X,反向映射回原来的特征空间"""
        assert X.shape[1] == self.components_.shape[0]

        return X.dot(self.components_)

    def __repr__(self):
        return "PCA(n_components = %d" % self.n_components

目录
相关文章
|
13天前
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
30 1
|
2天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
11 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
6天前
|
机器学习/深度学习 数据可视化 搜索推荐
使用Python实现深度学习模型:智能睡眠监测与分析
使用Python实现深度学习模型:智能睡眠监测与分析
27 2
|
7天前
|
机器学习/深度学习 搜索推荐 TensorFlow
使用Python实现深度学习模型:智能饮食建议与营养分析
使用Python实现深度学习模型:智能饮食建议与营养分析
32 3
|
8天前
|
机器学习/深度学习 搜索推荐 算法框架/工具
使用Python实现深度学习模型:智能运动表现分析
使用Python实现深度学习模型:智能运动表现分析
31 1
|
14天前
|
机器学习/深度学习 数据采集 人工智能
使用Python实现简单的机器学习分类器
【8月更文挑战第37天】本文将引导读者了解如何利用Python编程语言构建一个简单的机器学习分类器。我们将从基础概念出发,通过代码示例逐步深入,探索数据预处理、模型选择、训练和评估过程。文章旨在为初学者提供一条清晰的学习路径,帮助他们理解并实现基本的机器学习任务。
|
12天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
20 3
|
14天前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
25 1
|
2天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
8 0
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
12 0