hadoop生态系统的架构图(转载)

简介: 转自:http://blog.csdn.net/babyfish13/article/details/525276651、hadoop1.0时期架构2、hadoop2.

转自:http://blog.csdn.net/babyfish13/article/details/52527665


1、hadoop1.0时期架构

img_8614bd617f0d79428c634b8d084dc2eb.jpe

2、hadoop2.0时期架构

img_ec70519ea7f5d4739d82c4745c940baf.jpe

3、hdfs架构

img_f4d7329280845e74e5eb968fb8cc3b57.jpe

Active Namenode

主 Master(只有一个),管理 HDFS 的名称空间,管理数据块映射信息;配置副本策略;处理客户端读写请求

Secondary NameNode

NameNode 的热备;定期合并 fsimage 和 fsedits,推送给 NameNode;当 Active NameNode 出现故障时,快速切换为新的 Active NameNode。

Datanode

Slave(有多个);存储实际的数据块;执行数据块读 / 写

Client

与 NameNode 交互,获取文件位置信息;与 DataNode 交互,读取或者写入数据;管理 HDFS、访问 HDFS。

4、MapReduce

源自于 Google 的 MapReduce 论文

发表于 2004 年 12 月

Hadoop MapReduce 是 Google MapReduce 克隆版

MapReduce特点

良好的扩展性

高容错性

适合 PB 级以上海量数据的离线处理

5、yarn架构

img_759297503e757e595ef10fa2d18ba866.jpe

6、hadoop1.0与hadoop2.0比较图

img_af7d764c439750244458f49155583059.jpe

7、Hive(基于MR的数据仓库)

由Facebook开源,最初用于海量结构化日志数据统计;ETL(Extraction-Transformation-Loading)工具构建在Hadoop之上的数据仓库;数据计算使用 MapReduce,数据存储使用HDFS

Hive 定义了一种类 SQL 查询语言——HQL

类似SQL,但不完全相同

通常用于进行离线数据处理(采用 MapReduce);可认为是一个 HQL→MR 的语言翻译器

8、Hbase(分布式数据库)

源自 Google 的 Bigtable 论文

发表于 2006 年 11 月

Hbase 是 Google Bigtable 克隆版

9、Hadoop 发行版(开源版)

img_2bcb04f0e9750b01874494f6bef04224.jpe
目录
相关文章
|
11天前
|
人工智能 前端开发 编译器
【AI系统】LLVM 架构设计和原理
本文介绍了LLVM的诞生背景及其与GCC的区别,重点阐述了LLVM的架构特点,包括其组件独立性、中间表示(IR)的优势及整体架构。通过Clang+LLVM的实际编译案例,展示了从C代码到可执行文件的全过程,突显了LLVM在编译器领域的创新与优势。
33 3
|
21小时前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
96 76
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
5天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】Kernel 层架构
推理引擎的Kernel层负责执行底层数学运算,如矩阵乘法、卷积等,直接影响推理速度与效率。它与Runtime层紧密配合,通过算法优化、内存布局调整、汇编优化及调度优化等手段,实现高性能计算。Kernel层针对不同硬件(如CPU、GPU)进行特定优化,支持NEON、AVX、CUDA等技术,确保在多种平台上高效运行。
54 32
|
5天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
29 4
【AI系统】计算图优化架构
|
8天前
|
存储 人工智能 监控
【AI系统】推理系统架构
本文深入探讨了AI推理系统架构,特别是以NVIDIA Triton Inference Server为核心,涵盖推理、部署、服务化三大环节。Triton通过高性能、可扩展、多框架支持等特点,提供了一站式的模型服务解决方案。文章还介绍了模型预编排、推理引擎、返回与监控等功能,以及自定义Backend开发和模型生命周期管理的最佳实践,如金丝雀发布和回滚策略,旨在帮助构建高效、可靠的AI应用。
53 15
|
11天前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
43 12
存储 人工智能 自然语言处理
38 6
|
8天前
|
机器学习/深度学习 人工智能 API
【AI系统】昇腾异构计算架构 CANN
本文介绍了昇腾 AI 异构计算架构 CANN,涵盖硬件层面的达·芬奇架构和软件层面的全栈支持,旨在提供高性能神经网络计算所需的硬件基础和软件环境。通过多层级架构,CANN 实现了高效的 AI 应用开发与性能优化,支持多种主流 AI 框架,并提供丰富的开发工具和接口,助力开发者快速构建和优化神经网络模型。
21 1