HanLP中人名识别分析

简介:

在看源码之前,先看几遍论文《基于角色标注的中国人名自动识别研究》

关于命名识别的一些问题,可参考下列一些issue:

名字识别的问题 #387
机构名识别错误
关于层叠HMM中文实体识别的过程

词性标注

层叠HMM-Viterbi角色标注模型下的机构名识别

分词
在HMM与分词、词性标注、命名实体识别中说:

分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)

分词也是采用了维特比算法的动态规划性质求解的,具体可参考:文本挖掘的分词原理

角色观察
以“唱首张学友的歌情已逝”为例,

先将起始顶点 始##始,角色标注为:NR.A 和 NR.K,频次默认为1

iterator.next();
tagList.add(new EnumItem(NR.A, NR.K)); // 始##始 A K

image

对于第一个词“唱首”,它不存在于 nr.txt中,EnumItem nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);返回null,于是根据它本身的词性猜一个角色标注:

switch (vertex.guessNature()){

    case nr:
    case nnt:
default:{
    nrEnumItem = new EnumItem<NR>(NR.A, PersonDictionary.transformMatrixDictionary.getTotalFrequency(NR.A));
}

}

image

由于"唱首"的Attribute为 nz 16,不是nr 和 nnt,故默认给它指定一个角色NR.A,频率为nr.tr.txt中 NR.A 角色的总频率。

此时,角色列表如下:

image

接下来是顶点“张”,由于“张”在nr.txt中,因此PersonDictionary.dictionary.get(vertex.realWord)返回EnumItem对象,直接将它加入到角色列表中:

image

EnumItem nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);
tagList.add(nrEnumItem);
加入“张”之后的角色列表如下:

image
“唱首张学友的歌情已逝” 整句的角色列表如下:

image

至此,角色观察 部分 就完成了。

总结一下,对句子进行角色观察,首先是通过分词算法将句子分成若干个词,然后对每个词查询人名词典(PersonDictionary)。

若这个词在人名词典中(nr.txt),则记录该词的角色,所有的角色在com.hankcs.hanlp.corpus.tag.NR.java中定义。
若这个词不在人名词典中,则根据该词的Attribute “猜一个角色”。在猜的过程中,有些词在核心词典中可能已经标注为nr或者nnt了,这时会做分裂处理。其他情况下则是将这个词标上NR.A角色,频率为 NR.A 在转移矩阵中的总词频。
维特比算法(动态规划)求解最优路径
在上图中,给每个词都打上了角色标记,可以看出,一个词可以有多个标记。而我们需要将这些词选择一条路径最短的角色路径。参考隐马尔可夫模型维特比算法详解

List nrList = viterbiComputeSimply(roleTagList);
//some code....
return Viterbi.computeEnumSimply(roleTagList, PersonDictionary.transformMatrixDictionary);
而这个过程,其实就是:维特比算法解码隐藏状态序列。在这里,五元组是:

隐藏状态集合 com.hankcs.hanlp.corpus.tag.NR.java 定义的各个人名标签

观察状态集合 已经分好词的各个tagList中元素(相当于分词结果)
image

转移概率矩阵 由 nr.tr.txt 文件生成得到。具体可参考:

发射概率 某个人名标签(隐藏状态)出现的次数 除以 所有标签出现的总次数

Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)

初始状态(始##始) 和 结束状态(末##末)

image

维特比解码隐藏状态的动态规划求解核心代码如下:

        for (E cur : item.labelMap.keySet())
        {
            double now = transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] - Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur));
            if (perfect_cost > now)
            {
                perfect_cost = now;
                perfect_tag = cur;
            }
        }

transformMatrixDictionary.transititon_probabilitypre.ordinal() 是前一个隐藏状态 pre.ordinal()转换到当前隐藏状态cur.ordinal()的转移概率。Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)是当前隐藏状态的发射概率。二者“相减”得到一个概率 保存在double now变量中,然后通过 for 循环找出 当前观察状态 对应的 最可能的(perfect_cost最小) 隐藏状态 perfect_tag。

至于为什么是上面那个公式来计算转移概率和发射概率,可参考论文:《基于角色标注的中国人名自动识别研究》

在上面例子中,得到的最优隐藏状态序列(最优路径)K->A->K->Z->L->E->A->A 如下:

nrList = {LinkedList@1065} size = 8
"K" 始##始
"A" 唱首
"K" 张
"Z" 学友
"L" 的
"E" 歌
"A" 情已逝
"A" 末##末
例如:
​隐藏状态---观察状态
"K"----------始##始

最大匹配
有了最优隐藏序列:KAKZLEAA,接下来就是:后续的“最大匹配处理”了。

    PersonDictionary.parsePattern(nrList, pWordSegResult, wordNetOptimum, wordNetAll);

在最大匹配之前,会进行“模式拆分”。在com.hankcs.hanlp.corpus.tag.NR.java 定义了隐藏状态的具体含义。比如说,若最优隐藏序列中 存在 'U' 或者 'V',

U Ppf 人名的上文和姓成词 这里【有关】天培的壮烈

V Pnw 三字人名的末字和下文成词 龚学平等领导, 邓颖【超生】前

则会做“拆分处理”

switch(nr)
{

case U:
    //拆分成K B
case V:
    //视情况拆分

}
拆分完成之后,重新得到一个新的隐藏序列(模式)

String pattern = sbPattern.toString();
接下来,就用AC自动机进行最大模式匹配了,并将匹配的结果存储到“最优词网”中。当然,在这里就可以自定义一些针对特定应用的 识别处理规则

trie.parseText(pattern, new AhoCorasickDoubleArrayTrie.IHit(){

//.....
wordNetOptimum.insert(offset, new Vertex(Predefine.TAG_PEOPLE, name, ATTRIBUTE, WORD_ID), wordNetAll);

}
将识别出来的人名保存到最优词网后,再基于最优词网调用一次维特比分词算法,得到最终的分词结果---细分结果。

        if (wordNetOptimum.size() != preSize)
        {
            vertexList = viterbi(wordNetOptimum);
            if (HanLP.Config.DEBUG)
            {
                System.out.printf("细分词网:\n%s\n", wordNetOptimum);
            }
        }

总结
源码上的人名识别基本上是按照论文中的内容来实现的。对于一个给定的句子,先进行下面三大步骤处理:

角色观察
维特比算法解码求解隐藏状态(求解各个分词 的 角色标记)
对角色标记进行最大匹配(可做一些后处理操作)
最后,再使用维特比算法进行一次分词,得到细分结果,即为最后的识别结果。

这篇文章里面没有写维特比分词算法的详细过程,以及转移矩阵的生成过程,以后有时间再补上。看源码,对隐马模型的理解又加深了一点,感受到了理论的东西如何用代码一步步来实现。由于我也是初学,对源码的理解不够深入或者存在一些偏差,欢迎批评指正。

文章来源于网络

相关文章
|
自然语言处理 索引 算法
HanLP分词命名实体提取详解
文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程。对于文本来说,由于语言组织形式各异,表达方式多样,文本里面提到的很多要素,如人名、手机号、组织名、地名等都称之为实体。
7455 0
|
3月前
|
自然语言处理 算法 Windows
HanLP — 命名实体识别
HanLP — 命名实体识别
59 1
|
机器学习/深度学习 数据采集 存储
【英文文本分类实战】之四——词典提取与词向量提取
【英文文本分类实战】之四——词典提取与词向量提取
244 0
【英文文本分类实战】之四——词典提取与词向量提取
|
自然语言处理 机器学习/深度学习 Windows
Hanlp-地名识别调试方法详解
HanLP收词特别是实体比较多,因此特别容易造成误识别。下边举几个地名误识别的例子,需要指出的是,后边的机构名识别也以地名识别为基础,因此,如果地名识别不准确,也会导致机构名识别不准确。
1163 0
|
自然语言处理
自然语言处理工具HanLP-基于层叠HMM地名识别
本篇接上一篇内容《HanLP-基于HMM-Viterbi的人名识别原理介绍》介绍一下层叠隐马的原理。首先说一下上一篇介绍的人名识别效果对比: 只有Jieba识别出的人名准确率极低,基本为地名或复杂地名组成部分或复杂机构名组成部分。
1262 0
|
自然语言处理 机器学习/深度学习 Windows
HanLP-地名识别调试方法
HanLP收词特别是实体比较多,因此特别容易造成误识别。下边举几个地名误识别的例子,需要指出的是,后边的机构名识别也以地名识别为基础,因此,如果地名识别不准确,也会导致机构名识别不准确。 类型1 数字+地名[1] 暗访哈尔滨网约车:下10单来7辆“黑车” 1辆套牌[2] 房天下每日成交5月12日...
1140 0
|
自然语言处理 算法
HanLP-基于HMM-Viterbi的人名识别原理介绍
Hanlp自然语言处理包中的基于HMM-Viterbi处理人名识别的内容大概在年初的有分享过这类的文章,时间稍微久了一点,有点忘记了。看了 baiziyu 分享的这篇比我之前分享的要简单明了的多。下面就把文章分享给大家交流学习之用,部分内容有做修改。
1016 0
|
缓存 自然语言处理
Hanlp自然语言处理中的词典格式说明
使用过hanlp的都知道hanlp中有许多词典,它们的格式都是非常相似的,形式都是文本文档,随时可以修改。本篇文章详细介绍了hanlp中的词典格式,以满足用户自定义的需要。
4853 0
|
自然语言处理 算法 计算机视觉
pyhanlp 共性分析与短语提取内容详解
HanLP中的词语提取是基于互信息与信息熵。想要计算互信息与信息熵有限要做的是 文本分词进行共性分析。在作者的原文中,有几个问题,为了便于说明,这里首先给出短语提取的原理。在文末在给出pyhanlp的调用代码。
3696 0
|
自然语言处理 算法
HanLP中人名识别分析详解
这篇文章里面没有写维特比分词算法的详细过程,以及转移矩阵的生成过程,以后有时间再补上。看源码,对隐马模型的理解又加深了一点,感受到了理论的东西如何用代码一步步来实现。由于我也是初学,对源码的理解不够深入或者存在一些偏差,欢迎批评指正。
3111 0