官宣 | 移动互联网+智能运营体系搭建=你家有金矿啊!

简介:

每个企业都有许多的数据,但能否将数据转化成商业价值,是企业非常关心的问题。阿里巴巴曾自嘲是一家坐在数据的金矿上啃着馒头的企业,前几年集团积累了很多的数据,但这些数据并没有真正应用起来,受限于几个原因,比如大数据的技术框架还不成熟,运营团队对数据应用的意识还不是很强,但今天,数据在阿里巴巴的应用范围已经越来越广泛。
image

本文根据2018年云栖大会杭州站移动研发平台EMAS专场上,阿里巴巴资深技术专家元绰的演讲整理成文,介绍面向移动互联网时代的智能运营体系搭建,主要分成三块内容:第一,智能运营的使命和典型应用场景;第二,个性化推荐系统的架构;第三,AB在智能运营系统中的应用。

一、智能运营的使命和典型应用场景

衡量一个智能运营系统做得好不好,目标非常明确,就是看能不能帮企业实现数据的增长,因为增长是企业最核心的诉求。

要实现企业智能运营,首先要进行数据运营闭环的建设。传统的BI,收集数据,给老板产出报表,让老板做决策,但智能运营系统,最重要的是把数据应用到实际业务场景中,形成数据闭环。收集数据,通过模型的训练转换成系统的预测能力,运用到实际业务场景中,最后把用户的使用数据反馈给我们的系统。经过几轮迭代,整个系统的预测能力会越来越强。

企业希望提升业务结果,业务结果的提升依赖于平台上的用户对我们的认可。EMAS的业务统计模块可以承担数据采集的工作,了解了用户的行为,机器智能的作用就在于将用户的行为数据转换为企业的运营行动。
image

具体的流程可以分成这么几个部分:首先基于原始数据,以新客为例,根据用户对冷启动阶段的热门数据的点击情况,对用户进行第一次打标,我们大体识别该用户属于什么样的类型;其次,我们做尝试性推送,比如资讯或者产品,用户根据我所推送的资讯或者产品,会有相应的点击行为,经过几次交互,机器对该用户的理解会加深。最后,经过用户跟平台的多次互动后,企业配合相应的运营策略,比如促销,转化效果就会有比较明显的提升,这是智能运营系统的基本流程。

我们对用户的全生命周期理解,是从新客到老客以及老客帮你做传播这一整个阶段,时间周期还是比较长的。针对一个新用户,你直接把希望他下单的信息推送给他,效果往往不会特别好。所以必须要对用户整个生命阶段做一些细致的分析。

智能运营的三个典型的应用场景:

第一,千人千面。淘系在PC时代也做过推荐相关的工作,但效果不好。但到了无线时代之后,个性化推荐的效果就提升明显,源于用户行为发生了很大的变化。无目的性,碎片化,随时随地。我们能否将用户给我们的碎花片时间充分利用好,让我们的消费者一下子对我们的产品感兴趣,需要企业对用户要有非常深的理解和洞察。

第二,精准营销。营销活动前,分析所面向的人群,具体的定价策略,以及在这样的定价策略下的销量预测,这样企业就可以预先知道KPI的完成情况。

第三,智能选品。前面讲的更多的是,产品如何更多与用户进行互动,智能选品适用的场景是我们对目标客群有认知,希望触达我们原来没有触达到的那批用户。超市希望吸引年轻人,就需要调整货品结构,把年轻用户吸引回来。盒马、淘宝心选,是阿里做的比较好的案例。
image

二、个性化推荐系统架构

接下来,给大家介绍一下个性化推荐系统。个性化推荐在阿里巴巴集团这几年有很多的沉淀。以手机淘宝首页为例,很多地方都做了个性化,比如入口图,每个APP都有子频道,子频道的入口图大部分用的是设计师做的静态图,如果用子频道的数据跟用户做个性化匹配,做千人千面的入口图,入口点击的转化会有很大的提升。

好的个性化推荐需要有哪些注意点:

第一,工程实现。个性化推荐,传统的实现方法,是截止某一个时间点给用户计算一个推荐列表,每天把这个数据刷新一遍。这样做的问题是什么?用户的数据量一直在增长,相应的存储成本也会随之增长,企业投入成本会很大。所以系统设计的时候需要考虑借助标签的能力。另外,每个人对标签对应的货品排序应该不一样,我们要增加二次排序,要保证每一个人的推荐列表虽然货品一样,但是顺序有差异。

第二,实时推荐。离线推荐主要是基于历史数据,实时推荐是基于当天的数据,当天给用户做推荐,转化率往往最高。但是对我们的挑战是什么?第一,必须有实时计算的能力,因为用户给我们的时间非常少,如果你延迟五分钟,基本上用户就流失了。第二,从算法角度来讲,必须要做一个平衡,你是基于历史推荐数据,还是当天的实时数据,到底哪个转换率最高,要做一个平衡。

第三,时间和空间。拿电商来说,羽绒服或者衣服都有季节属性,羽绒服适合冬天穿,电子产品有新老款,判断一个用户从来都只买新款,你就应该把新款推荐给他。另外,推送有时间衰减效应,不能一直推相同的货品。时间和空间是必须考虑的两个维度。

第四,发现性。大家在做个性化推荐的时候,模型基本上都是以一个具体的目标来做优化,但这里会有一个什么问题呢?会产生很严重的马太效应:第一,我的推荐依赖于我的历史数据。为什么给你推衣服?是因为你老是看衣服,模型判断推衣服的转化肯定是最高的,我推荐了,然后你又点了,这样又产生了一条历史数据,我发现效果确实很好,那模型下次推什么?肯定还是给你推衣服。但实际上每个人的兴趣爱好很广泛,我给你推的品类越来越窄,最后发现你的行为也越来越窄,这跟人的实际特征是不匹配。我们要在推荐系统里扩展品类的宽度。第二,推什么样的产品转化率最高?肯定是爆款,不管是金融行业还是其他的行业,爆款转化率最高,模型判断推爆款的转化比一般产品的转化要更高,导致什么结果?系统推荐的产品范围也越来越窄,这是很严重的问题。就是说给用户推荐的品类越来越窄,产品范围越来越窄。所以在整个模型过程中,去尝试推荐一些他可能原来历史记录里面不存在的东西,去做一些尝试性的发现,这是非常有意义的,否则对短期收益有好处,但是对长期收益有影响。所以转化率很重要,但是发现性更重要,品类拓宽会让你的业务体量越来越大,产品也一样,爆款之后肯定有新品,新品也需要变成爆款。

第五,脏数据。脏数据一般分两类,第一类是无效数据,比如说“双十一”,因为当天他们的行为非常特殊。“双十一”当天买了你平时可能不会买的东西。这样的数据对日常推荐并没有太大的帮助,这些数据必须要剔掉。第二类数据是作弊数据。像刷信用、刷积分的数据量往往很大,这样的数据如果不剔除掉,最终预测的结果和你原来的真实值之间的偏差会非常大。
image

最后介绍一下阿里巴巴实时推荐的系统架构,大概会分成这么几个部分,有EMAS数据统计模块,采集数据,拿到数据之后要对数据进行加工和训练,形成模型后把数据应用到生产环境。生产环境,一般来说是存储到图数据库,因为它是网状结构,最后是一个非常简单的API,可以简单调用数据。系统中有一块很重要,就是在模型训练过程中必须要具备支持行业经验的输入,因为我们在实践过程中发现,今天通用的模型去叠加一些行业规则,它的效果是非常好的,因为每个行业有每个行业的特殊性,今天一套通用算法想应用到所有行业是不现实的。这是我们个性化推荐系统的简单系统架构图,它一定要是一个闭环,数据一定要转起来,因为数据不转起来我们就不知道我推荐的结果是否准确、对用户的洞察是否准确,我们要必须保证数据运行一段时间后,数据是整体往上涨的。

三、AB在智能运营中的应用

最后给大家讲一下AB测试在智能运营中的应用。大家也知道今天算法的发展非常快,像前几年深度学习很火,这几年强化学习,一些新的算法发展很快,我们在模型迭代过程中需要应用新的算法。但一般来讲,我们不一定能确认哪个算法的效果更好,我今天在线下做非常多的评测,但最后还是要到生产环境去做实验。我们可以做分桶测试,基准桶和测试桶,测试桶我们用一个模型,基准桶用另一个模型,比较两个模型的效果。实际在应用过程中,我们在做AB测试前,必须要做AA测试,保证在实验之前两个桶的数据是一模一样的,这个时候你再把一个桶的模型换掉,数据是可信的。

相关文章
|
弹性计算 Cloud Native 小程序
【年终特辑】看见科技创新力量 洞见时代创业精神—企业服务—蓝犀牛搬家:挑战非标化运营模式,云加速服务体验
【年终特辑】看见科技创新力量 洞见时代创业精神—企业服务—蓝犀牛搬家:挑战非标化运营模式,云加速服务体验
179 0
|
运维 数据可视化 安全
【年终特辑】看见科技创新力量 洞见时代创业精神—企业服务—明道优术:政务办公系统,为人民高效率服务
【年终特辑】看见科技创新力量 洞见时代创业精神—企业服务—明道优术:政务办公系统,为人民高效率服务
132 0
|
人工智能 供应链 安全
【年终特辑】看见科技创新力量 洞见时代创业精神—企业服务—搜猴宝:用SaaS工具打造人力数字化撮合交易平台
【年终特辑】看见科技创新力量 洞见时代创业精神—企业服务—搜猴宝:用SaaS工具打造人力数字化撮合交易平台
136 0
|
存储 机器学习/深度学习 人工智能
重磅联名 | 阿里云&百奥利盟构建云上精准医疗与创新生物药信息化管理平台
阿里云计算巢与为全球生命科学信息化解决方案服务商百奥利盟达成合作,百奥利盟®系统 + 计算巢强强优势联合,构建云上精准医疗与创新生物药信息化管理平台。
452 0
重磅联名 | 阿里云&百奥利盟构建云上精准医疗与创新生物药信息化管理平台
|
数据可视化 安全 新能源
【氚云】破解多门店管理难题,揭秘汽车服务行业云转型之道
破解多门店管理难题,揭秘汽车服务行业云转型之道
263 0
【氚云】破解多门店管理难题,揭秘汽车服务行业云转型之道
|
搜索推荐 数据可视化 BI
【氚云】佰荣名品家居借力氚云,升级企业管理之道
佰荣名品家居借力氚云,升级企业管理之道
176 0
【氚云】佰荣名品家居借力氚云,升级企业管理之道
|
存储 监控 数据可视化
【案例现场】“贴身战”背后,是精细化运营的实力较量
大数据时代企业除了在基础建设中更为重视数据以外,对执行力和速度的响应要求也越发严格。BI软件也不再仅仅是一个工具,更是一套契合数智化时代的决策管理方案,通过对数据的整合,融入业务逻辑,供给执行层行动指南,供给管理层决策参考,及时把控整体业务,发现业务问题,调整经营决策,从而不断改善整体业务,推动业务增长。
【案例现场】“贴身战”背后,是精细化运营的实力较量
|
数据采集 搜索推荐 大数据
联手友盟+打造数据融合“样板间”, 好兔视频成功逆势突围
好兔视频选择牵手友盟+,深度融合行业应用大数据,建立设备质量分层等数据应用模型,帮助处于初创期的好兔视频解决数据应用、拉新、留存等运营难题,实现发展突围。
535 0
联手友盟+打造数据融合“样板间”, 好兔视频成功逆势突围
|
数据可视化 开发者
快速搭建疫情相关平台 阿里宜搭全国多地打响数字化战“疫”
疫情当前,居民身体出现发热、咳嗽等情况如何快速上报?企业复工复产如何科学有序进行? 通过阿里巴巴宜搭平台快速搭建上线的“疫情上报平台”、“企业复工申报申请表”等系统,正为浙江、湖北、安徽等地区的相关疫情服务和管理工作提供快速响应的解决方案。
快速搭建疫情相关平台 阿里宜搭全国多地打响数字化战“疫”
|
搜索推荐
义乌启动“保企方舟”行动,多措并举帮扶企业渡难关
近期,义乌出台了《关于帮扶企业渡过难关的六条意见》,启动“保企方舟”专项行动,帮助企业稳就业,降成本,政银企携手共渡难关。