人脸识别三大经典算法(附PDF下载、经典论文列表)

简介:

特征脸法(Eigenface)

特征脸技术是近期发展起来的用于人脸或者一般性刚体识别以及其它涉及到人脸处理的一种方法。使用特征脸进行人脸识别的方法首先由Sirovich和Kirby(1987)提出(《Low-dimensional procedure forthe characterization of human faces》),并由Matthew Turk和Alex Pentland用于人脸分类(《Eigenfaces for recognition》)。首先把一批人脸图像转换成一个特征向量集,称为“Eigenfaces”,即“特征脸”,它们是最初训练图像集的基本组件。识别的过程是把一副新的图像投影到特征脸子空间,并通过它的投影点在子空间的位置以及投影线的长度来进行判定和识别。

3960b48b7f78f4f2d52d2e995d47ae33a7f3b435

将图像变换到另一个空间后,同一个类别的图像会聚到一起,不同类别的图像会聚力比较远,在原像素空间中不同类别的图像在分布上很难用简单的线或者面切分,变换到另一个空间,就可以很好的把他们分开了。

Eigenfaces选择的空间变换方法是PCA(主成分分析),利用PCA得到人脸分布的主要成分,具体实现是对训练集中所有人脸图像的协方差矩阵进行本征值分解,得到对应的本征向量,这些本征向量就是“特征脸”。每个特征向量或者特征脸相当于捕捉或者描述人脸之间的一种变化或者特性。这就意味着每个人脸都可以表示为这些特征脸的线性组合。

局部二值模式(Local Binary Patterns,LBP)

局部二值模式(Local binary patterns LBP)是计算机视觉领域里用于分类的视觉算子。LBP,一种用来描述图像纹理特征的算子,该算子由芬兰奥卢大学的T.Ojala等人在1996年提出(《A comparative study of texturemeasures with classification based on featured distributions》)。2002年,T.Ojala等人在PAMI上又发表了一篇关于LBP的文章(《Multiresolution gray-scale androtation invariant texture classification with local binary patterns》)。这一文章非常清楚的阐述了多分辨率、灰度尺度不变和旋转不变、等价模式的改进的LBP特征。LBP的核心思想就是:以中心像素的灰度值作为阈值,与他的领域相比较得到相对应的二进制码来表示局部纹理特征。

eb99fabebbe1ae4d9353478b650542d5d0b5ae21

LBP是提取局部特征作为判别依据的。LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题。不过相比于特征脸方法,LBP的识别率已经有了很大的提升。

Fisherface

线性鉴别分析在降维的同时考虑类别信息,由统计学家Sir R. A.Fisher1936年发明(《The useof multiple measurements in taxonomic problems》)。为了找到一种特征组合方式,达到最大的类间离散度和最小的类内离散度。这个想法很简单:在低维表示下,相同的类应该紧紧的聚在一起,而不同的类别尽量距离越远。1997年,Belhumer成功将Fisher判别准则应用于人脸分类,提出了基于线性判别分析的Fisherface方法(《Eigenfaces vs. fisherfaces:Recognition using class specific linear projection》)。

792c8e0c995594f600e8a6fc5c7a626361c9979c

经典论文

Sirovich,L.,&Kirby,M.(1987).

Low-dimensional procedure for the characterization of human faces.

Josa a,4(3),519-524.

研究证明任何的特殊人脸都可以通过称为eigenpictures的坐标系统来表示。Eigenpictures是面部集合的平均协方差的本征函数。

Turk,M.,&Pentland,A.(1991).

Eigenfaces forrecognition.

Journal of cognitive neuroscience,3(1), 71-86.

研究开发了一种近实时的计算机系统,可以定位和追踪人的头部,然后通过比较面部特征和已知个体的特征来识别该人。该方法将面部识别问题视为二维识别问题。识别的过程是把一副新的图像投影到特征脸子空间,该特征空间捕捉到已知面部图像之间的显著变化。重要特征称为特征脸,因为它们是面集的特征向量。

Ojala,T.,Pietikäinen,M.,&Harwood,D.(1996).

Acomparative study of texture measures with classification based on featureddistributions.

Pattern recognition,29(1),51-59.

研究对不同的图形纹理进行比较,并提出了用来描述图像纹理特征的LBP算子。

Ojala,T.,Pietikainen,M.,&Maenpaa,T.(2002).

Multiresolutiongray-scale and rotation invariant texture classification with local binarypatterns.

IEEE Transactions on pattern analysis and machineintelligence,24(7),971-987.

研究提出了一种理论上非常简单而有效的灰度和旋转不变纹理分类方法,该方法基于局部二值模式和样本和原型分布的非参数判别。该方法具有灰度变化稳健、计算简单的特点。

Fisher,R.A.(1936).

The use of multiple measurementsin taxonomic problems.

Annals of eugenics,7(2),179-188.

研究找到一种特征组合方式,以达到最大的类间离散度和最小的类内离散度。解决方式为:在低维表示下,相同的类应该紧紧的聚在一起,而不同的类别尽量距离越远。

Belhumeur,P.N.,Hespanha,J.P.,&Kriegman,D.J(1997).

Eigenfacesvs.fisherfaces:Recognition using class specificlinear projection. Yale University New Haven United States.

研究基于Fisher的线性判别进行面部投影,能够在低维子空间中产生良好分离的类,即使在光照和面部表情的变化较大情况下也是如此。广泛的实验结果表明,所提出的“Fisherface”方法的误差率低于哈佛和耶鲁人脸数据库测试的特征脸技术。

报告内容速览

 ●  概述篇:基本概念/发展历程/中国政策支持/发展热点/相关会议
 ●  技术篇:人脸识别流程/人脸识别主要方法/人脸识别三大经典算法/常用的人脸数据库
 ●  人才篇:学者概况/国外人才简介/国内人才简介
 ●  应用篇:国内人脸识别领头企业/应用领域
 ●  趋势篇:机器识别与人工识别相结合/3D人脸识别技术的广泛应用/基于深度学习的人脸识别技术的广泛应用/人脸图像数据库的实质提升

原文发布时间为:2018-10-17
本文作者:AMiner
本文来自云栖社区合作伙伴“ 数据派THU”,了解相关信息可以关注“ 数据派THU”。
相关文章
|
2月前
|
存储 机器学习/深度学习 编解码
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
本文提出统一相位正交啁啾分复用(UP-OCDM)方案,利用循环矩阵特性设计两种低复杂度均衡算法:基于带状近似的LDL^H分解和基于BEM的迭代LSQR,将复杂度由$O(N^3)$降至$O(NQ^2)$或$O(iNM\log N)$,在双选择性信道下显著提升高频谱效率与抗多普勒性能。
205 0
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
|
4月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
175 0
|
3月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
527 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
3月前
|
机器学习/深度学习 算法 算法框架/工具
256KB内存约束下的设备端训练:算法与系统协同设计——论文解读
MIT与MIT-IBM Watson AI Lab团队提出一种创新方法,在仅256KB SRAM和1MB Flash的微控制器上实现深度神经网络训练。该研究通过量化感知缩放(QAS)、稀疏层/张量更新及算子重排序等技术,将内存占用降至141KB,较传统框架减少2300倍,首次突破设备端训练的内存瓶颈,推动边缘智能发展。
274 6
|
6月前
|
人工智能 文字识别 自然语言处理
熊猫 OCR 识别软件下载,支持截图 OCR、PDF 识别、多语言翻译的免费全能工具,熊猫OCR识别
本文介绍了几款实用的图文识别软件,包括熊猫OCR、Umi-OCR和天若OCR_本地版。熊猫OCR功能强大,支持多窗口操作、AI找图找色、OCR识别等;Umi-OCR免费且高效,具备截图OCR、批量处理等功能;天若OCR界面简洁,适合快速文字识别。文章还提供了下载链接及软件特点、界面展示等内容,便于用户根据需求选择合适的工具。
625 36
|
4月前
|
人工智能 算法 安全
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
160 0
|
8月前
|
人工智能 自然语言处理 算法
科研论文翻译神器!BabelDOC:开源AI工具让PDF论文秒变双语对照,公式图表全保留
BabelDOC 是一款专为科学论文设计的开源AI翻译工具,采用先进的无损解析技术和智能布局识别算法,能完美保留原文格式并生成双语对照翻译。
2370 67
科研论文翻译神器!BabelDOC:开源AI工具让PDF论文秒变双语对照,公式图表全保留
|
8月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
1039 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
6月前
|
存储 安全 算法
Java 集合面试题 PDF 下载及高频考点解析
本文围绕Java集合面试题展开,详细解析了集合框架的基本概念、常见集合类的特点与应用场景。内容涵盖`ArrayList`与`LinkedList`的区别、`HashSet`与`TreeSet`的对比、`HashMap`与`ConcurrentHashMap`的线程安全性分析等。通过技术方案与应用实例,帮助读者深入理解集合类的特性和使用场景,提升解决实际开发问题的能力。文末附带资源链接,供进一步学习参考。
166 4
|
10月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。

热门文章

最新文章