Python爬虫:Scrapy框架的安装和基本使用

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:

大家好,本篇文章我们来看一下强大的Python爬虫框架Scrapy。Scrapy是一个使用简单,功能强大的异步爬虫框架,我们先来看看他的安装。

Scrapy的安装

Scrapy的安装是很麻烦的,对于一些想使用Scrapy的人来说,它的安装常常就让很多人死在半路。在此我将我的安装过程和网络上整理的安装方法,分享给大家,希望大家能够安装顺利。如果你在学习Python的过程中遇见了很多疑问和难题,可以加-q-u-n 227 -435-450里面有软件视频资料免费

screenshot

Windows安装

开始之前,我们要确定自己安装了Python,本篇文章我们以Python3.5为例。Scrapy有很多依赖的包,我们来一一安装。

首先,使用pip -v,查看pip是否安装正常,如果正常,那么我们进行下一步;

pip install wheel这个包我们之前的文章介绍过,安装好他我们就可以安装一些wheel件;

lxml安装,之前的文章说过他的安装,那么我们这里在重新整理一下。whl文件地址:here。找到自己对应版本的文件,下载好后,找到文件位置,右键点击文件属性,点击安全标签,复制他的所在路径。打开管理员工具(cmd),pip install <粘贴whl路径>;

PyOpenssl 的whl文件地址:here。点击下载,whl文件安装方式同上;

Twisted框架这个框架是一个异步网络库,是Scrapy的核心。whl文件地址:here;

Pywin32这是一个Pywin32兼容的库,下载地址:here,选好版本进行下载;

如果上面的库全都安装好了,那么我们就可以安装我们的Scrapy了,pip install scrapy

是不是很麻烦呢,如果大家不喜欢折腾,那么在Windows下也可以很方便的安装。那就要使用我们之前提到的Anaconda了。具体安装大家自己找找,或者在之前的文章中找。那么他的安装Scrapy只需要一行:

conda install scrapy

Linux安装

Linux系统安装起来就要简单一点:

sudo apt-get install build-essential python3-dev libssl-dev libffi-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev

Mac OS安装

我们需要先安装一些C++的依赖库,xcode-select --install

需要安装命令行开发工具,我们点击安装。安装完成,那么依赖库也就安装完成了。

然后我们直接使用pip安装pip install scrapy

以上,我们的Scrapy库的安装基本上就解决了。

Scrapy的基本使用

Scrapy的中文文档地址:here

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

他的基本项目流程为:

创建一个Scrapy项目

定义提取的Item

编写爬取网站的spider并提取Item

编写Item Pipeline来存储提取到的Item(即数据)

而一般我们的爬虫流程为:

抓取索引页:请求索引页的URL并得到源代码,进行下一步分析;

获取内容和下一页链接:分析源代码,提取索引页数据,并且获取下一页链接,进行下一步抓取;

翻页爬取:请求下一页信息,分析内容并请求在下一页链接;

保存爬取结果:将爬取结果保存为特定格式和文本,或者保存数据库。

我们一步一步来看看如何使用。

创建项目

在开始爬取之前,您必须创建一个新的Scrapy项目。 进入您打算存储代码的目录中,运行下列命令(以知乎日报为例):

scrapy startproject zhihurb

该命令将会创建包含下列内容的 zhihu 目录:

zhihurb/

scrapy.cfg

zhihurb/

    __init__.py

    items.py

    pipelines.py

    settings.py

    spiders/

        __init__.py

        ...

这些文件分别是:

scrapy.cfg: 项目的配置文件zhihurb/: 该项目的python模块。之后您将在此加入代码。zhihurb/items.py: 项目中的item文件.zhihurb/pipelines.py: 项目中的pipelines文件.zhihurb/settings.py: 项目的设置文件.zhihurb/spiders/: 放置spider代码的目录.

定义Item

这一步是定义我们需要获取到的数据信息,比如我们需要获得网站里的一些url,网站文章的内容,文章的作者等。这一步定义的地方就在我们的items.py文件。

import scrapy

class ZhihuItem(scrapy.Item):

name = scrapy.Field()

article = scrapy.Field()

编写Spider

这一步就是写我们最熟悉的爬虫了,而我们的Scrapy框架可以让我们不需要去考虑实现的方法,只需要写出爬取的逻辑就可以了。

首先我们需要在 spiders/ 文件夹下创建我们的爬虫文件,比如就叫spider.py。写爬虫前,我们需要先定义一些内容。我们以知乎日报为例:https://daily.zhihu.com/

from scrapy import Spider

class ZhihuSpider(Spider):

name = "zhihu"

allowed_domains = ["zhihu.com"]

start_urls = ['https://daily.zhihu.com/']

这里我们定义了什么呢?首先我们导入了Scrapy的Spider组件。然后创建一个爬虫类,在类里我们定义了我们的爬虫名称:zhihu(注意:爬虫名称独一无二的,是不可以和别的爬虫重复的)。还定义了一个网址范围,和一个起始 url 列表,说明起始 url 可以是多个。

然后我们定义一个解析函数:

def parse(self, response):

print(response.text)

我们直接打印一下,看看这个解析函数是什么。

运行爬虫

scrapy crawl zhihu

由于Scrapy是不支持在IDE中执行,所以我们必须在命令行里执行命令,我们要确定是不是cd到爬虫目录下。然后执行,这里的命令顾名思义,crawl是蜘蛛的意思,zhihu就是我们定义的爬虫名称了。

查看输出,我们先看到的是一些爬虫类的输出,可以看到输出的log中包含定义在 start_urls 的初始URL,并且与spider中是一一对应的。我们接着可以看到打印出了网页源代码。可是我们似乎并没有做什么,就得到了网页的源码,这是Scrapy比较方便的一点。

提取数据

接着就可以使用解析工具解析源码,拿到数据了。

由于Scrapy内置了CSS和xpath选择器,而我们虽然可以使用Beautifulsoup,但是BeautifulSoup的缺点就是慢,这不符合我们Scrapy的风格,所有我还是建议大家使用CSS或者Xpath。

由于之前我并没有写过关于Xpath或者CSS选择器的用法,那么首先这个并不难,而且熟悉浏览器的用法,可以很简单的掌握他们。

我们以提取知乎日报里的文章url为例:

from scrapy import Request

def parse(self, response):

urls = response.xpath('//div[@class="box"]/a/@href').extract()

for url in urls:

    yield Request(url, callback=self.parse_url)

这里我们使用xpath解析出所有的url(extract()是获得所有URL集合,extract_first()是获得第一个)。然后将url利用yield语法糖,回调函数给下一个解析url的函数。

使用item

后面详细的组件使用留在下一章讲解,这里假如我们解析出了文章内容和标题,我们要将提取的数据保存到item容器。

Item对象相当于是自定义的python字典。 您可以使用标准的字典语法来获取到其每个字段的值。(字段即是我们之前用Field赋值的属性)。

假如我们下一个解析函数解析出了数据

def parse_url(self, response):

# name = xxxx

# article = xxxx

# 保存

item = DmozItem()

item['name'] = name

item['article'] = article

# 返回item

yield item

保存爬取到的数据

这里我们需要在管道文件pipelines.py里去操作数据,比如我们要将这些数据的文章标题只保留 5 个字,然后保存在文本里。或者我们要将数据保存到数据库里,这些都是在管道文件里面操作。我们后面在详细讲解。

那么最简单的存储方法是使用命令行命令:

scrapy crawl zhihu -o items.json

这条命令就会完成我们的数据保存在根目录的json文件里,我们还可以将他格式保存为msv,pickle等。改变命令后面的格式就可以了。

相关文章
|
19天前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
8天前
|
JSON 安全 中间件
Python Web 框架 FastAPI
FastAPI 是一个现代的 Python Web 框架,专为快速构建 API 和在线应用而设计。它凭借速度、简单性和开发人员友好的特性迅速走红。FastAPI 支持自动文档生成、类型提示、数据验证、异步操作和依赖注入等功能,极大提升了开发效率并减少了错误。安装简单,使用 pip 安装 FastAPI 和 uvicorn 即可开始开发。其优点包括高性能、自动数据验证和身份验证支持,但也存在学习曲线和社区资源相对较少的缺点。
48 15
|
3天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
5天前
|
关系型数据库 API 数据库
Python流行orm框架对比
Python中有多个流行的ORM框架,如SQLAlchemy、Django ORM、Peewee、Tortoise ORM、Pony ORM、SQLModel和GINO。每个框架各有特点,适用于不同的项目需求。SQLAlchemy功能强大且灵活,适合复杂项目;Django ORM与Django框架无缝集成,易用性强;Peewee轻量级且简单,适合小型项目;Tortoise ORM专为异步框架设计;Pony ORM查询语法直观;SQLModel结合Pydantic,适合FastAPI;GINO则适合异步环境开发。初学者推荐使用Django ORM或Peewee,因其易学易用。
|
8天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
45 7
|
15天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
58 3
|
26天前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
27天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
1月前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
75 7