Python3入门机器学习 - PCA(主成分分析)

简介: 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。这种方法在引进多方面变量的同时将复杂因素归结为几个主成分,使问题简单化,同时得到的结果更加科学有效的数据信息。

img_80b04df9b267cca9e5d075e2c78c2337.png


使用梯度上升法求解主成分


//准备数据
import numpy as np
import matplotlib.pyplot as plt

X = np.empty((100,2))
X[:,0] = np.random.uniform(0.,100.,size=100)
X[:,1] = 0.75*X[:,0]+3.+np.random.normal(0,10.,size=100)

plt.scatter(X[:,0],X[:,1])
plt.show
img_ca898bb4c0a4b0193bfef2cd45b66e66.png
// 数据demean过程
def demean(X):
    return X - np.mean(X,axis=0)
#效用函数
def f(w,X):
    return np.sum((X.dot(w)**2))/len(X)

#效用函数导函数
def df_math(w,X):
    return X.T.dot(X.dot(w))*2./len(X)

#测试导函数是否正确
def df_debug(w,x,epsilon=0.0001):
    res = np.empty(len(w))
    for i in range(len(w)):
        w_1 = w.copy()
        w_1[i] += epsilon
        w_2 = w.copy()
        w_2[i] -= epsilon
        res[i] = (f(w_1,X)-f(w_2,X))/(2*epsilon)
    return res

#使w变为单位向量
def direction(w):
    return w/np.linalg.norm(w)

#梯度上升
def gradient_ascent(df,X,initial_w,eta,n_iters=1e4,epsilon=1e-8):
    
    cur_iter = 0
    w = direction(initial_w)
    
    while cur_iter<n_iters:
        gradient = df(w,X)
        last_w = w
        w = w + eta*gradient
        w = direction(w)   #每次计算后都应该将w转变为单位向量
        if(abs(f(w,X) - f(last_w,X))<epsilon):
            break
        
        cur_iter +=1
        
    return w
initial_w = np.random.random(X.shape[1])   #不能使用0向量作为初始向量,因为0向量本身是一个极值点

eta = 0.01

gradient_ascent(df_debug,X,initial_w,eta)

gradient_ascent(df_math,X,initial_w,eta)
求解数据的前n个主成分
def first_n_components(n,X,eta=0.01,n_iters=1e4,epsilon=1e-8):
    
    X_pca = X.copy()
    X_pca = demean(X_pca)
    res = []
    
    for i in range(n):
        initial_w = np.random.random(X_pca.shape[1])
        w = first_component(df_math,X_pca,initial_w,eta)
        res.append(w)
         /*
         for i in range(len(X)):
          X2[i] = X[i] -X[i].dot(w)*w
        */
        X_pca = X_pca - X_pca.dot(w).reshape(-1,1)*w
        
    return res


封装PCA


# _*_ encoding:utf-8 _*_
import numpy as np

class PCA:
    def __init__(self,n_components):
        self.n_components = n_components
        self.components_ = None

    def fit(self,X,eta=0.01,n_iters=1e4):

        def demean(X):
            return X - np.mean(X, axis=0)

        # 效用函数
        def f(w, X):
            return np.sum((X.dot(w) ** 2)) / len(X)

        # 效用函数导函数
        def df(w, X):
            return X.T.dot(X.dot(w)) * 2. / len(X)

        def direction(w):
            return w / np.linalg.norm(w)

        def first_component(df, X, initial_w, eta, n_iters=1e4, epsilon=1e-8):
            cur_iter = 0
            w = direction(initial_w)
            while cur_iter < n_iters:
                gradient = df(w, X)
                last_w = w
                w = w + eta * gradient
                w = direction(w)  # 每次计算后都应该将w转变为单位向量
                if (abs(f(w, X) - f(last_w, X)) < epsilon):
                    break
                cur_iter += 1
            return w

        def first_n_components(n, X, eta=0.01, n_iters=1e4, epsilon=1e-8):
            X_pca = X.copy()
            X_pca = demean(X_pca)
            res = []

            for i in range(n):
                initial_w = np.random.random(X_pca.shape[1])
                w = first_component(df, X_pca, initial_w, eta)
                res.append(w)
                X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w
            return res

        X_pca = demean(X)
        self.components_ = np.empty(shape=(self.n_components,X.shape[1]))
        self.components_ = first_n_components(self.n_components,X)
        self.components_ = np.array(self.components_)
        return self

    def transform(self,X):
        return X.dot(self.components_.T)

    def inverse_transform(self,X):
        return X.dot(self.components_)


    def __repr__(self):
        return "PCA(n_components=%d)" %self.n_components


scikit-learn中的PCA


scikit-learn中的PCA没有使用梯度上升法求解主成分,因此使用sklearn中的PCA求解的主成分是与我们求解的向量方向是相反的

from sklearn.decomposition import PCA

pca = PCA(n_components=1)

pca.fit(X)

X_transform = pca.transform(X)

X_restore = pca.inverse_transform(X_transform)

plt.scatter(X[:,0],X[:,1],color='b',alpha=0.5)
plt.scatter(X_restore[:,0],X_restore[:,1],color='r',alpha=0.5)

img_0d23df5e0ee4a6d9ea9dfefa504b2364.png


使用PCA处理digits数据集

img_4d1082bbd3dea6e38e179a5f32babd96.png

从图中可以看到,使用PCA将digits数据集的数据维度降低到二维后,knn算法的fit时间降低很多,而score准确率却下降到0.6

pca = PCA(n_components=X_train.shape[1])

pca.fit(X_train)

pca.explained_variance_ratio_   #合并某一维度之后的对数据方差的损失后的正确率

plt.plot([i for i in range(X.shape[1])],[np.sum(pca.explained_variance_ratio_[:i+1]) for i in range(X_train.shape[1])])
img_a56b29f98c459e46f273fa2e6a4858bd.png

img_097b1863ce7d6fe789273a50d055d01d.png
pca = PCA(0.95)

pca.fit(X_train)

pca.n_components_             -> pca.n_components = 28
#即降低到28个维度后有原数据95%的正确率
目录
相关文章
|
2天前
|
人工智能 数据挖掘 开发者
Python编程入门:从基础到实战
【9月更文挑战第18天】本文将带你走进Python的世界,从最基本的语法开始,逐步深入到实际的项目应用。无论你是编程新手,还是有一定基础的开发者,都能在这篇文章中找到你需要的内容。我们将通过详细的代码示例和清晰的解释,让你轻松掌握Python编程。
15 5
|
3天前
|
Python
全网最适合入门的面向对象编程教程:Python函数方法与接口-函数与方法的区别和lamda匿名函数
【9月更文挑战第15天】在 Python 中,函数与方法有所区别:函数是独立的代码块,可通过函数名直接调用,不依赖特定类或对象;方法则是与类或对象关联的函数,通常在类内部定义并通过对象调用。Lambda 函数是一种简洁的匿名函数定义方式,常用于简单的操作或作为其他函数的参数。根据需求,可选择使用函数、方法或 lambda 函数来实现代码逻辑。
|
4天前
|
存储 机器学习/深度学习 数据挖掘
深入浅出:Python编程入门与实践
【9月更文挑战第16天】本文以“深入浅出”的方式,引领读者步入Python编程的世界。从基础语法到实际应用,我们将一步步探索Python的魅力所在。无论你是编程新手,还是希望拓展技能的老手,这篇文章都将为你提供有价值的信息和指导。通过本文的学习,你将能够编写出简单而实用的Python程序,为进一步深入学习打下坚实的基础。让我们一起开始这段编程之旅吧!
|
2天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
11 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
2天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
7 0
|
3天前
|
机器学习/深度学习 数据采集 存储
Python编程入门:从基础到实战
【9月更文挑战第17天】本文将带你进入Python的世界,从最基础的语法开始,逐步深入到实战项目。我们将一起探索Python的强大功能和灵活性,以及如何利用它解决实际问题。无论你是编程新手,还是有一定经验的开发者,都能在这篇文章中找到有价值的内容。让我们一起开启Python的学习之旅吧!
|
4天前
|
存储 程序员 Python
Python编程入门:从零到英雄
【9月更文挑战第16天】本文是一篇针对初学者的Python编程入门指南,旨在帮助读者从零基础开始,通过简单易懂的语言和实例,逐步掌握Python编程的基本知识和技能。文章首先介绍了Python的起源和特点,然后详细讲解了Python的安装、基本语法、数据类型、控制结构、函数、模块等基础知识,最后通过一个简单的项目实例,展示了如何运用所学知识解决实际问题。全文通俗易懂,结构清晰,适合所有对Python感兴趣的读者阅读和学习。
|
23天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
15天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
18天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
117 1