Python3入门机器学习 - 支撑向量机SVM

简介: SVM的主要思想可以概括为两点:它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。

SVM的主要思想可以概括为两点:

  1. 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。
  2. 它基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界。


    img_e0de2c454fb92f5d91aeaf77df18c117.png






Hard Margin SVM


img_f2631c283d32472f287e740ae52d9d66.png
n维平面中点到直线的距离公式
对于红点和蓝点每个点应满足的不等式条件
img_18f14a49f0f9ed2f0e082b672447c332.png
image.png
问题最终转化为
img_21c29f45dd661e5f8c74078042fdb1b4.png

即最终转化为有条件的最优化问题
img_a888add75ae5166f912ba11a5ca1be9d.png
有条件的最优化问题




Soft Margin SVM


img_9fcba23ba7744ba19fff6453e93738f1.png
将eta值加入模型正则化项,给模型一定的容错能力,C越大,容错空间越小,C越小,容错空间越大
使用scikit-learn中的svm
from sklearn import datasets
import numpy as np 
import matplotlib.pyplot as plt

#准备数据
iris = datasets.load_iris()
X = iris['data']
y = iris['target']
X = X[y<2,:2]
y = y[y<2]
#数据归一化(SVC涉及距离,应该使用数据归一化处理)
from sklearn.preprocessing import StandardScaler
stdScaler = StandardScaler()
stdScaler.fit(X)
X_standard = stdScaler.transform(X)
#实例化svc对象,训练模型
from sklearn.svm import LinearSVC
svc = LinearSVC(C=1e9)
svc.fit(X_standard,y)
def plot_svc_decision_boundary(model,axis):
    x0,x1 = np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    X_new = np.c_[x0.ravel(),x1.ravel()]
    
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)

    #除去决策边界外,还要画出svc支撑向量的线
    w = model.coef_[0]
    b = model.intercept_[0]
    
    # w0x0 + w1x1 + b = 0
    # => x1 = -w0/w1*w0-b/w1
    
    plot_x = np.linspace(axis[0],axis[1],200)
    up_y = -w[0]/w[1] * plot_x - b/w[1] +1/w[1]
    down_y = -w[0]/w[1] * plot_x - b/w[1] -1/w[1]
    
    up_index = (up_y>=axis[2])&(up_y<=axis[3])
    down_index = (down_y>=axis[2])&(down_y<=axis[3])
    plt.plot(plot_x[up_index],up_y[up_index],color='black')
    plt.plot(plot_x[down_index],down_y[down_index],color='black')

plot_svc_decision_boundary(svc,axis=[-3,3,-3,3])
plt.scatter(X_standard[y==0,0],X_standard[y==0,1])
plt.scatter(X_standard[y==1,0],X_standard[y==1,1])
plt.show()
img_bd43a3c930e398f7fefcdea4a89f7559.png
svc = LinearSVC(C=1e9)

img_8f35f1d33c4a582279cba77d3de6a158.png
svc = LinearSVC(C=0.1)
多项式特征应用于SVM
#使用制作数据的方法生成数据,噪音为0.15
X,y = datasets.make_moons(noise=0.15)

plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

def PolynomialSVC(degree,C=1.0):
    return Pipeline([
        ("poly",PolynomialFeatures(degree=degree)),
        ("std_standard",StandardScaler()),
        ("svc",LinearSVC(C=C))
    ])
img_ced5762888d9181de76f5440c73edbec.png
使用多项式核函数的SVM
from sklearn.svm import SVC

def PolynomialKernelSVC(degree,C=1.0):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("kernelSVC",SVC(kernel="poly",degree=degree,C=C))
    ])

poly_kernel_svc = PolynomialKernelSVC(degree=5)
poly_kernel_svc.fit(X,y)
plot_decision_boundary(poly_kernel_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
img_eb6a1a4b0290c9cb6d529949030056b8.png
与使用LinearSVC不同
原理
img_435c1c09334a2e29e8f5b696d1dedfb1.png
将原来的损失函数转换为右式

img_ac256a9f31c2b3c4071a2a640224050a.png
多项式原本转换是将xi,ji转换为新的矩阵,这里多项式核函数就是K函数,用函数K计算出新的矩阵,达到和原来多项式转换相同的效果

img_1991f04d5d0e4ae738d30ef9aef98570.png
二次项K函数的计算方法

img_0e6397cbfdfa4d3796ba3021971f2a76.png
d代表degree,用多项式核函数的方法计算新的矩阵




RBFKernel(高斯核函数)


img_e722890a7814216daa31a0a8331c61e3.png
gamma为高斯核的超参数
def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ("std_sacler",StandardScaler()),
        ("svc",SVC(kernel="rbf",gamma=gamma))
    ])

svc = RBFKernelSVC()
svc.fit(X,y)
def plot_decision_boundary(model,axis):
    x0,x1 = np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100))
    )
    X_new = np.c_[x0.ravel(),x1.ravel()]
    
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    
    plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)

plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()
img_4aa0c1a4c54cf28be65270dedf9d4b99.png
gamma=1.0的高斯核函数进行SVC

img_3d83953d5fb965617075f6ec1242e59d.png
gamma=100的高斯核,过拟合

img_50b9e95d494ff6f9819b4ab9cb299333.png
gamma=0.1的高斯核,欠拟合


SVM思想解决回归问题

img_4c5b941abff09539518a4bd5101a1cf0.png

boston = datasets.load_boston()

X = boston['data']
y = boston['target']

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y)

from sklearn.svm import LinearSVR
#epsilon为超参数
def StandardLinearSVR(epsilon=0.1):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("svc",LinearSVR(epsilon=epsilon))
    ])

lin_svr = StandardLinearSVR()
lin_svr.fit(X_train,y_train)
lin_svr.score(X_test,y_test)
>>> 0.6735924094720267
目录
相关文章
|
2天前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
11 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
8天前
|
机器学习/深度学习 人工智能 算法
探索AI的奥秘:机器学习入门之旅
【8月更文挑战第43天】本文将带领读者开启一段奇妙的学习之旅,探索人工智能背后的神秘世界。我们将通过简单易懂的语言和生动的例子,了解机器学习的基本概念、算法和应用。无论你是初学者还是有一定基础的学习者,都能从中获得启发和收获。让我们一起踏上这段激动人心的学习之旅吧!
|
14天前
|
机器学习/深度学习 数据采集 人工智能
使用Python实现简单的机器学习分类器
【8月更文挑战第37天】本文将引导读者了解如何利用Python编程语言构建一个简单的机器学习分类器。我们将从基础概念出发,通过代码示例逐步深入,探索数据预处理、模型选择、训练和评估过程。文章旨在为初学者提供一条清晰的学习路径,帮助他们理解并实现基本的机器学习任务。
|
12天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
20 3
|
14天前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
25 1
|
19天前
|
机器学习/深度学习 算法 数据挖掘
|
2天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
7 0
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
12 0
|
13天前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。
|
20天前
|
机器学习/深度学习 人工智能 算法
探索AI的奥秘:机器学习入门之旅
【8月更文挑战第31天】本文将带领读者开启一段奇妙的学习之旅,探索人工智能背后的神秘世界。我们将通过简单易懂的语言和生动的例子,了解机器学习的基本概念、算法和应用。无论你是初学者还是有一定基础的学习者,都能从中获得启发和收获。让我们一起踏上这段激动人心的学习之旅吧!