大型分布式网站架构技术总结:高性能+高可用+可扩展+可伸缩架构

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介:

本文是大型分布式网站架构的技术总结,文末有分布式架构设计33精讲资料~

一、大型网站架构特点

用户多,分布广泛

大流量,高并发

海量数据,服务高可用

安全环境恶劣,易受网络攻击

功能多,变更快,频繁发布

从小到大,渐进发展

以用户为中心

免费服务,付费体验

二、大型网站架构目标

高性能:提供快速的访问体验。

高可用:网站服务一直可以正常访问。

可伸缩:通过硬件增加/减少,提高/降低处理能力。

安全性:提供网站安全访问和数据加密,安全存储等策略。

扩展性:方便的通过新增/移除方式,增加/减少新的功能/模块。

敏捷性:随需应变,快速响应;

三、大型网站架构模式

分层:一般可分为,应用层,服务层,数据层,管理层,分析层;

分割:一般按照业务/模块/功能特点进行划分,比如应用层分为首页,用户中心。

分布式:将应用分开部署(比如多台物理机),通过远程调用协同工作。

集群:一个应用/模块/功能部署多份(如:多台物理机),通过负载均衡共同提供对外访问。

缓存:将数据放在距离应用或用户最近的位置,加快访问速度。

异步:将同步的操作异步化。客户端发出请求,不等待服务端响应,等服务端处理完毕后,使用通知或轮询的方式告知请求方。一般指:请求——响应——通知 模式。

冗余:增加副本,提高可用性,安全性,性能。

安全:对已知问题有有效的解决方案,对未知/潜在问题建立发现和防御机制。

自动化:将重复的,不需要人工参与的事情,通过工具的方式,使用机器完成。

敏捷性:积极接受需求变更,快速响应业务发展需求。

四、高性能架构

以用户为中心,提供快速的网页访问体验。主要参数有较短的响应时间,较大的并发处理能力,较高的吞吐量,稳定的性能参数。

可分为前端优化,应用层优化,代码层优化,存储层优化。

前端优化:网站业务逻辑之前的部分;

浏览器优化:减少Http请求数,使用浏览器缓存,启用压缩,Css Js位置,Js异步,减少Cookie传输;

CDN加速,反向代理;

应用层优化:处理网站业务的服务器。使用缓存,异步,集群

代码优化:合理的架构,多线程,资源复用(对象池,线程池等),良好的数据结构,JVM调优,单例,Cache等;

存储优化:缓存,固态硬盘,光纤传输,优化读写,磁盘冗余,分布式存储(HDFS),NOSQL等;

五、高可用架构

大型网站应该在任何时候都可以正常访问。正常提供对外服务。因为大型网站的复杂性,分布式,廉价服务器,开源数据库,操作系统等特点。要保证高可用是很困难的,也就是说网站的故障是不可避免的。

如何提高可用性,就是需要迫切解决的问题。首先,需要从架构级别,在规划的时候,就考虑可用性。行业内一般用几个9表示可用性指标。比如四个9(99.99),一年内允许的不可用时间是53分钟。

不同层级使用的策略不同,一般采用冗余备份和失效转移解决高可用问题。

应用层:一般设计为无状态的,对于每次请求,使用哪一台服务器处理是没有影响的。一般使用负载均衡技术(需要解决Session同步问题),实现高可用。

服务层:负载均衡,分级管理,快速失败(超时设置),异步调用,服务降级,幂等设计等。

数据层:冗余备份(冷,热备[同步,异步],温备),失效转移(确认,转移,恢复)。数据高可用方面著名的理论基础是CAP理论(持久性,可用性,数据一致性[强一致,用户一致,最终一致])

六、可伸缩架构

伸缩性是指在不改变原有架构设计的基础上,通过添加/减少硬件(服务器)的方式,提高/降低系统的处理能力。

应用层:对应用进行垂直或水平切分。然后针对单一功能进行负载均衡(DNS,HTTP[反向代理],IP,链路层)。

服务层:与应用层类似;

数据层:分库,分表,NOSQL等;常用算法Hash,一致性Hash。

七、可扩展架构

可以方便的进行功能模块的新增/移除,提供代码/模块级别良好的可扩展性。

模块化,组件化:高内聚,内耦合,提高复用性,扩展性。

稳定接口:定义稳定的接口,在接口不变的情况下,内部结构可以“随意”变化。

设计模式:应用面向对象思想,原则,使用设计模式,进行代码层面的设计。

消息队列:模块化的系统,通过消息队列进行交互,使模块之间的依赖解耦。

分布式服务:公用模块服务化,提供其他系统使用,提高可重用性,扩展性。

八、安全架构

对于安全问题,首先要提高安全意识,建立一个安全的有效机制,从政策层面,组织层面进行保障。比如服务器密码不能泄露,密码每月更新,并且三次内不能重复;每周安全扫描等。以制度化的方式,加强安全体系的建设。同时,需要注意与安全有关的各个环节。安全问题不容忽视。包括基础设施安全,应用系统安全,数据保密安全等。

基础设施安全:硬件采购,操作系统,网络环境方面的安全。一般采用,正规渠道购买高质量的产品,选择安全的操作系统,及时修补漏洞,安装杀毒软件防火墙。防范病毒,后门。设置防火墙策略,建立DDOS防御系统,使用攻击检测系统,进行 子网隔离等手段。

应用系统安全:在程序开发时,对已知常用问题,使用正确的方式,在代码层面解决掉。防止跨站脚本攻击(XSS),注入攻击,跨站请求伪造(CSRF),错误信息,HTML注释,文件上传,路径遍历等。还可以使用Web应用防火墙(比如:ModSecurity),进行安全漏洞扫描等措施,加强应用级别的安全。

数据保密安全:存储安全(存在在可靠的设备,实时,定时备份),保存安全(重要的信息加密保存,选择合适的人员复杂保存和检测等),传输安全(防止数据窃取和数据篡改);

常用的加解密算法(单项散列加密[MD5,SHA],对称加密[DES,3DES,RC]),非对称加密[RSA]等。

九、敏捷性

网站的架构设计,运维管理要适应变化,提供高伸缩性,高扩展性。方便的应对快速的业务发展,突增高流量访问等要求。

除上面介绍的架构要素外,还需要引入敏捷管理,敏捷开发的思想。使业务,产品,技术,运维统一起来,随需应变,快速响应。

十、大型架构举例


以上采用七层逻辑架构:

第一层客户层

第二层前端优化层

第三层应用层

第四层服务层

第五层数据存储层

第六层大数据存储层

第七层大数据处理层。

客户层:支持PC浏览器和手机APP。差别是手机APP可以直接访问通过IP访问,反向代理服务器。

前端层:使用DNS负载均衡,CDN本地加速以及反向代理服务;

应用层:网站应用集群;按照业务进行垂直拆分,比如商品应用,会员中心等;

服务层:提供公用服务,比如用户服务,订单服务,支付服务等;

数据层:支持关系型数据库集群(支持读写分离),NOSQL集群,分布式文件系统集群;以及分布式Cache;

大数据存储层:支持应用层和服务层的日志数据收集,关系数据库和NOSQL数据库的结构化和半结构化数据收集;

大数据处理层:通过Mapreduce进行离线数据分析或Storm实时数据分析,并将处理后的数据存入关系型数据库。(实际使用中,离线数据和实时数据会按照业务要求进行分类处理,并存入不同的数据库中,供应用层或服务层使

更多分布式架构设计33精讲


欢迎Java工程师朋友们加入Java工程师学习交流群:795632998,进群即可领取资料。群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

目录
相关文章
|
24天前
|
消息中间件 缓存 架构师
关于 Kafka 高性能架构,这篇说得最全面,建议收藏!
Kafka 是一个高吞吐量、高性能的消息中间件,关于 Kafka 高性能背后的实现,是大厂面试高频问题。本篇全面详解 Kafka 高性能背后的实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
关于 Kafka 高性能架构,这篇说得最全面,建议收藏!
|
4天前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
18 1
|
12天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
26 8
|
17天前
|
人工智能 运维 算法
引领企业未来数字基础架构浪潮,中国铁塔探索超大规模分布式算力
引领企业未来数字基础架构浪潮,中国铁塔探索超大规模分布式算力
|
1月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
21天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
36 5
|
14天前
|
供应链 算法 安全
深度解析区块链技术的分布式共识机制
深度解析区块链技术的分布式共识机制
28 0
|
1月前
|
监控 算法 网络协议
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
9天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
27 5