OpenCV中的新函数connectedComponentsWithStats使用

简介: 主要内容:对比新旧函数,用于过滤原始图像中轮廓分析后较小的区域,留下较大区域。关键字    :connectedComponentsWithStats在以前,常用的方法是”是先调用 cv::findContours() 函数(传入cv::RETR_CCOMP 标志),随后在得到的连通区域上循环...
主要内容:对比新旧函数,用于过滤原始图像中轮廓分析后较小的区域,留下较大区域。
关键字    :connectedComponentsWithStats

在以前,常用的方法是 是先调用  cv::findContours()  函数(传入 cv::RETR_CCOMP  标志),随后在得到的连通区域上循环调用  cv::drawContours()
比如,我在GOCVHelper中这样进行了实现
//寻找最大的轮廓
    VP FindBigestContour(Mat src){    
        int imax = 0; //代表最大轮廓的序号
        int imaxcontour = -1; //代表最大轮廓的大小
        std::vector<std::vector<Point>>contours;    
        findContours(src,contours,CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);
        for (int i=0;i<contours.size();i++){
            int itmp =  contourArea(contours[i]);//这里采用的是轮廓大小
            if (imaxcontour < itmp ){
                imax = i;
                imaxcontour = itmp;
            }
        }
        return contours[imax];
    }
    //寻找并绘制出彩色联通区域
    vector<VPconnection2(Mat src,Matdraw){    
        draw = Mat::zeros(src.rows,src.cols,CV_8UC3);
        vector<VP>contours;    
        findContours(src.clone(),contours,CV_RETR_LIST,CV_CHAIN_APPROX_SIMPLE);
        //由于给大的区域着色会覆盖小的区域,所以首先进行排序操作
        //冒泡排序,由小到大排序
        VP vptmp;
        for(int i=1;i<contours.size();i++){
            for(int j=contours.size()-1;j>=i;j--){
                if (contourArea(contours[j]) < contourArea(contours[j-1]))
                {
                    vptmp = contours[j-1];
                    contours[j-1] = contours[j];
                    contours[j] = vptmp;
                }
            }
        }
在OpenCV3中有了新的专门的函数  cv::connectedComponents()  和函数  cv::connectedComponentsWithStats()
定义:
int  cv::connectedComponents (
    cv::InputArrayn image,                // input 8-bit single-channel (binary)
    cv::OutputArray labels,               // output label map
    int             connectivity = 8,     // 4- or 8-connected components
    int             ltype        = CV_32S // Output label type (CV_32S or CV_16U)
    );
int  cv::connectedComponentsWithStats (
    cv::InputArrayn image,                // input 8-bit single-channel (binary)
    cv::OutputArray labels,               // output label map
    cv::OutputArray stats,                // Nx5 matrix (CV_32S) of statistics:
                                                                         // [x0, y0, width0, height0, area0;
                                                                        //  ... ; x(N-1), y(N-1), width(N-1),
                                                                          // height(N-1), area(N-1)]
    cv::OutputArray centroids,            // Nx2 CV_64F matrix of centroids:
                                                                          // [ cx0, cy0; ... ; cx(N-1), cy(N-1)]
    int             connectivity = 8,     // 4- or 8-connected components
    int             ltype        = CV_32S // Output label type (CV_32S or CV_16U)
    );
其中,新出现的参数
stats:长这样
img_749ab45cf7604991085a8bb1049cfdd7.png
分别对应各个轮廓的x,y,width,height和面积。注意0的区域标识的是background
centroids则对应的是中心点
而label则对应于表示是当前像素是第几个轮廓
例子:
对于图像
img_5f8042a6c3d5e395778f7a7b3a8fb33d.png
     Mat img = cv::imread"e:/sandbox/rect.png",0); 
    cv::Mat  img_edgelabelsimg_colorstats,centroids;
    cv::threshold(imgimg_edge, 128, 255, cv::THRESH_BINARY);
    bitwise_not(img_edge,img_edge);
    cv::imshow("Image after threshold"img_edge);
    int inccomps = cv::connectedComponentsWithStats (
        img_edgelabels,
        statscentroids
        );
    cout << "Total Connected Components Detected: " << nccomps << endl;
    vector<cv::Vec3bcolors(nccomps+1);
    colors[0] = Vec3b(0,0,0); // background pixels remain black.
    fori = 1; i < nccompsi++ ) {
        colors[i] = Vec3b(rand()%256, rand()%256, rand()%256);
        ifstats.at<int>(icv::CC_STAT_AREA) < 200 )
            colors[i] = Vec3b(0,0,0); // small regions are painted with black too.
    }
    img_color = Mat::zeros(img.size(), CV_8UC3);
    forint y = 0; y < img_color.rowsy++ )
        forint x = 0; x < img_color.colsx++ )
        {
            int label = labels.at<int>(yx);
            CV_Assert(0 <= label && label <= nccomps);
            img_color.at<cv::Vec3b>(yx) = colors[label];
        }
    cv::imshow("Labeled map"img_color);
    cv::waitKey();
注意:
1、对于OpenCV来说,白色代表有数据,黑色代表没有数据,所以图像输入之前要转换成”黑底白图“
2、看 labels  和  stats,其中第1 2 6 个的面积小于200
img_6d542b8747a21fe2a034c9b674052b5e.png
而labels中
img_cce02fa3261beff75bb27c8c591e35c3.gif
完全对的上号,结果
img_92adae0c24c929bb7493a448c5a17d40.png






目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
175 0
|
计算机视觉
OpenCV-图像翻转函数cv::filp
OpenCV-图像翻转函数cv::filp
283 0
|
人工智能 Linux API
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
242 0
|
计算机视觉 C++
OpenCV-计时函数cv::getTickCount&cv::getTickFrequency
OpenCV-计时函数cv::getTickCount&cv::getTickFrequency
302 0
|
算法 计算机视觉
Opencv学习笔记(六):cv2.resize函数的介绍
这篇文章介绍了OpenCV库中cv2.resize函数的使用方法,包括其参数、插值方式选择以及实际代码示例。
2243 1
Opencv学习笔记(六):cv2.resize函数的介绍
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
3697 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
计算机视觉
OpenCV滑动条(createTrackbar()函数)如何在多个维度进行同步调整?
这篇文章介绍了如何在OpenCV中使用`createTrackbar()`函数创建多个滑动条以同步调整图像的多个维度(如亮度和对比度),通过将不同滑动条的回调函数合并为一个,确保它们在同一图像基础上进行调整。
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
监控 算法 Serverless
OpenCV这么简单为啥不学——1.12、使用ssim函数对两张照片进行相似度分析
OpenCV这么简单为啥不学——1.12、使用ssim函数对两张照片进行相似度分析
399 0
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.6、图像旋转与翻转(rotate函数、imutils环境安装、imutils任意角度旋转)
OpenCV这么简单为啥不学——1.6、图像旋转与翻转(rotate函数、imutils环境安装、imutils任意角度旋转)
191 0