大数据处理平台与案例

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
数据安全中心,免费版
简介:

image
大数据能够在国内得到快速发展,甚至是国家层面的支持,最为重要的一点就是我们纯国产大数据处理技术的突破以及跨越式发展。在互联网深刻改变我们的生活、工作方式的当下,数据就成为了最为重要的资料。尤其是数据安全问题就更为突出,前阶段的Facebook用户数据泄漏所引发产生的一系列问题,就充分的说明了数据安全问题的严重性。大数据发展的必然趋势就是将会深刻改变我们的工作和生活方式,无论是企业还是个人也都必然会成为其中的一个“数据”。选择什么样的大数据处理,不仅仅考虑是简单、易用,更重要的是能够确保数据的安全!
当前国内的hadoop大数据处理平台可以说是比较杂乱的,有国外的、有在国外版本基础上二次开发,却很少有做原生态开发的。而至于做原生态开发的,目前已知也就是大快搜索了。所以,个人一直很喜欢大快搜索产品手册封面上的一句话:让每个程序员都能开发大数据 底层技术从此触手可及!在这里我也是直接把大快搜索的手册封面图拿来了做了文章的封面。image
hadoop
大数据处理平台与案例
大数据可以说是从搜索引擎诞生之处就有了,我们熟悉的搜索引擎,如百度搜索引擎、360搜索引擎等可以说是大数据技处理技术的最早的也是比较基础的一种应用。大概在2015年大数据都还不是非常火爆,2015年可以说是大数据的一个分水岭。随着互联网技术的快速发展,大数据也随之迎来它的发展高峰期。
整个大数据处理技术的核心基础hadoop、mapreduce、nosql系统,而这三个系统是建立在谷歌提出的大表、分布式文件系统和分布式计算的三大技术构架上,以此来解决海量数据处理的问题。虽然说大数据处理技术最早兴起于国外,但就当前大数据处理技术的应用还是我们国内做的要比较好。从近两年国家对大数据的扶持力度,我们可以很明显的感觉到大数据正在与我们的生活、工作深刻的结合。
image

大数据能够在国内得到快速发展,甚至是国家层面的支持,最为重要的一点就是我们纯国产大数据处理技术的突破以及跨越式发展。在互联网深刻改变我们的生活、工作方式的当下,数据就成为了最为重要的资料。尤其是数据安全问题就更为突出,前阶段的Facebook用户数据泄漏所引发产生的一系列问题,就充分的说明了数据安全问题的严重性。大数据发展的必然趋势就是将会深刻改变我们的工作和生活方式,无论是企业还是个人也都必然会成为其中的一个“数据”。选择什么样的大数据处理,不仅仅考虑是简单、易用,更重要的是能够确保数据的安全!
当前国内的hadoop大数据处理平台可以说是比较杂乱的,有国外的、有在国外版本基础上二次开发,却很少有做原生态开发的。而至于做原生态开发的,目前已知也就是大快搜索了。所以,个人一直很喜欢大快搜索产品手册封面上的一句话:让每个程序员都能开发大数据 底层技术从此触手可及!在这里我也是直接把大快搜索的手册封面图拿来了做了文章的封面。

大数据的应用开发一直是过于偏向底层,面临的问题就是学习难度大,所涉及的技术面也是非常广泛,这在很大程度上了制约了大数据的普及,这也是大部分大数据处理平台都面临的突出问题。大快搜索所推出的大数据一体化开发框架基本上是很好的解决了这样的问题。它把大数据开发中的一些通过的,重复使用的基础代码、算法封装为类库,降低了大数据的学习门槛,降低了开发难度,很好的提高了大数据项目的开发效率。大快的一体化开发框架由数据源与SQL引擎、数据采集(自定义爬虫)模块、数据处理模块、机器学习算法、自然语言处理模块、搜索引擎模块,六部分组成。采用类黑箱框架模式,用户直接调用大快的相关类即可完成,过去复杂的编码工作。
大快的大数据通用计算平台(DKHadoop),已经集成相同版本号的开发框架的全部组件。关于DKhadoop大数据处理平台的案例,其实感兴趣的可以去大快的网站上查询一下,里面有很多案例分享。个人所知的是DKhadoop的政务大数据处理解决方案非常好!大家也可以在大快网站上查询一下这方面的方案资料。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
192 1
|
3月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
96 0
|
3月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
230 0
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
79 0
|
5天前
|
SQL 人工智能 自然语言处理
DataWorks年度发布:智能化湖仓一体数据开发与治理平台的演进
阿里云在过去15年中持续为268集团提供数据服务,积累了丰富的实践经验,并连续三年在IDC中国数据治理市场份额中排名第一。新一代智能数据开发平台DateWorks推出了全新的DateStudio IDE,支持湖仓一体化开发,新增Flink计算引擎和全面适配locs,优化工作流程系统和数据目录管理。同时,阿里云正式推出个人开发环境模式和个人Notebook,提升开发者体验和效率。此外,DateWorks Copilot通过自然语言生成SQL、代码补全等功能,显著提升了数据开发与分析的效率,已累计帮助开发者生成超过3200万行代码。
|
2月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
245 3
【赵渝强老师】基于大数据组件的平台架构
|
3月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
42 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
3月前
|
机器学习/深度学习 监控 搜索推荐
电商平台如何精准抓住你的心?揭秘大数据背后的神秘推荐系统!
【10月更文挑战第12天】在信息爆炸时代,数据驱动决策成为企业优化决策的关键方法。本文以某大型电商平台的商品推荐系统为例,介绍其通过收集用户行为数据,经过预处理、特征工程、模型选择与训练、评估优化及部署监控等步骤,实现个性化商品推荐,提升用户体验和销售额的过程。
116 1
|
3月前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
47 1
|
3月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
57 3