PostgreSQL 并行计算tpc-h测试和优化分析

简介:

PostgreSQL 并行计算tpc-h测试和优化分析

作者

digoal

日期

2016-11-08

标签

PostgreSQL , 并行计算 , TPC-H


背景

PostgreSQL 9.6首次推出支持聚合、全表扫描、HASH JOIN、nestloop的并行计算。

https://www.postgresql.org/docs/9.6/static/release-9-6.html

Parallel queries (Robert Haas, Amit Kapila, David Rowley, many others)   

With 9.6, PostgreSQL introduces initial support for parallel execution of large queries.   

Only strictly read-only queries where the driving table is accessed via a sequential scan can be parallelized.   

Hash joins and nested loops can be performed in parallel, as can aggregation (for supported aggregates).   

Much remains to be done, but this is already a useful set of features.   

Parallel query execution is not (yet) enabled by default. To allow it, set the new configuration parameter max_parallel_workers_per_gather to a value larger than zero.   

Additional control over use of parallelism is available through other new configuration parameters force_parallel_mode, parallel_setup_cost, parallel_tuple_cost, and min_parallel_relation_size.   

Provide infrastructure for marking the parallel-safety status of functions (Robert Haas, Amit Kapila)   

那么他对TPC-H有多少的性能提升呢?

Robert的PostgreSQL 9.6 TPC-H测试说明

并行度设为4,22条查询有17条使用了并行执行计划。

15条比单核执行更快,其中11条提升至少2倍,1条速度未变化,还有1条变慢。

I decided to try out parallel query, as implemented in PostgreSQL 9.6devel, on the TPC-H queries.

To do this, I followed the directions at https://github.com/tvondra/pg_tpch - thanks to Tomas Vondra for those instructions.

I did the test on an IBM POWER7 server provided to the PostgreSQL community by IBM.

I scaled the database to use 10GB of input data; the resulting database size was 22GB, of which 8GB was indexes.

I tried out each query just once without really tuning the database at all, except for increasing shared_buffers to 8GB.

Then I tested them again after enabling parallel query by configuring max_parallel_degree = 4.

Of the 22 queries, 17 switched to a parallel plan, while the plans for the other 5 were unchanged.

Of the 17 queries where the plan changed, 15 got faster, 1 ran at the same speed, and 1 got slower.

11 of the queries ran at least twice as fast with parallelism as they did without parallelism.

Here are the comparative results for the queries where the plan changed(Parallel vs 单核执行):

Q1: 229 seconds → 45 seconds (5.0x)  

Q3: 45 seconds → 17 seconds (2.6x)  

Q4: 12 seconds → 3 seconds (4.0x)  

Q5: 38 seconds → 17 seconds (2.2x)  

Q6: 17 seconds → 6 seconds (2.8x)  

Q7: 41 seconds → 12 seconds (3.4x)  

Q8: 10 seconds → 4 seconds (2.5x)  

Q9: 81 seconds → 61 seconds (1.3x)  

Q10: 37 seconds → 18 seconds (2.0x)  

Q12: 34 seconds → 7 seconds (4.8x)  

Q15: 33 seconds → 24 seconds (1.3x)  

Q16: 17 seconds → 16 seconds (1.0x)  

Q17: 140 seconds → 55 seconds (2.5x)  

Q19: 2 seconds → 1 second (2.0x)  

Q20: 70 seconds → 70 seconds (1.0x)  

Q21: 80 seconds → 99 seconds (0.8x)  

Q22: 4 seconds → 3 seconds (1.3x)  

Linear scaling with a leader process and 4 workers would mean a 5.0x speedup, which we achieved in only one case.

However, for many users, that won't matter: if you have CPUs that would otherwise be sitting idle, it's better to get some speedup than no speedup at all.

Of course, I couldn't resist analyzing what went wrong here, especially for Q21, which actually got slower.

Q21变慢的原因,是work_mem的配置问题,以及当前HASH JOIN并行机制的问题。

To some degree, that's down to misconfiguration:

I ran this test with the default value of work_mem=4MB, but Q21 chooses a plan that builds a hash table on the largest table in the database, which is about 9.5GB in this test.

Therefore, it ends up doing a 1024-batch hash join, which is somewhat painful under the best of circumstances.

With work_mem=1GB, the regression disappears, and it's 6% faster with parallel query than without.

目前HASH JOIN,每一个并行的WORKER都需要一份hash table的拷贝,如果大表hash的话,会在大表基础上放大N倍的CPU和内存的开销。

小表HASH这个问题可以缓解。

However, there's a deeper problem, which is that while PostgreSQL 9.6 can perform a hash join in parallel, each process must build its own copy of the hash table.

That means we use N times the CPU and N times the memory, and we may induce I/O contention, locking contention, or memory pressure as well.

It would be better to have the ability to build a shared hash table, and EnterpriseDB is working on that as a feature, but it won't be ready in time for PostgreSQL 9.6, which is already in feature freeze.

Since Q21 needs a giant hash table, this limitation really stings.

HASH JOIN可以提升的点,使用共享的HASH TABLE,而不是每个woker process都拷贝一份。

这个可能要等到PostgreSQL 10.0加进来了。

In fact, there are a number of queries here where it seems like building a shared hash table would speed things up significantly: Q3, Q5, Q7, Q8, and Q21.

An even more widespread problem is that, at present, the driving table for a parallel query must be accessed via a parallel sequential scan;

that's the only operation we have that can partition the input data.

另一个提升的点,bitmap scan,因为有几个QUERY的瓶颈是在bitmap scan哪里,但是目前并行计算还不支持bitmap scan。

Many of these queries - Q4, Q5, Q6, Q7, Q14, Q15, and Q20 - would have been better off using a bitmap index scan on the driving table, but unfortunately that's not supported in PostgreSQL 9.6.

We still come out ahead on these queries in terms of runtime because the system simply substitutes raw power for finesse:

with enough workers, we can scan the whole table quicker than a single process can scan the portion identified as relevant by the index.

However, it would clearly be nice to do better.

Four queries - Q2, Q15, Q16, Q22 - were parallelized either not at all or only to a limited degree due to restrictions related to the handling of subqueries,

about which the current implementation of parallel query is not always smart.

Three queries - Q2, Q13, and Q15 - made no or limited use of parallelism because the optimal join strategy is a merge join, which can't be made parallel in a trivial way.

One query - Q17 - managed to perform the same an expensive sort twice, once in the workers and then again in the leader.

This is because the Gather operation reads tuples from the workers in an arbitrary and not necessarily predictable order;

so even if each worker's stream of tuples is sorted, the way those streams get merged together will probably destroy the sort ordering.

There are no doubt other issues here that I haven't found yet, but on the whole I find these results pretty encouraging.

Parallel query basically works, and makes queries that someone thought were representative of real workloads significantly faster.

There's a lot of room for further improvement, but that's likely to be true of the first version of almost any large feature.

并行需要继续提升的点

HASH JOIN可以提升的点,使用共享的HASH TABLE,而不是每个woker process都拷贝一份。

这个可能要等到PostgreSQL 10.0加进来了。

另一个提升的点,bitmap scan,因为有几个QUERY的瓶颈是在bitmap scan哪里,但是目前并行计算还不支持bitmap scan。

支持merge join。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
人工智能 搜索推荐 数据管理
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
458 11
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
884 8
|
8月前
|
JSON 测试技术 API
优化你的 REST Assured 测试:设置默认主机与端口、GET 请求与断言
REST Assured 是一个强大的 Java 库,用于简化 RESTful API 测试。本文详解了其核心功能:设置默认主机和端口以减少代码重复、发起 GET 请求并验证响应结果,以及通过断言确保接口行为符合预期。同时推荐 Apipost 工具,助力开发者提升 API 测试效率,实现更高效的接口管理与团队协作。掌握这些技巧,可显著优化测试流程与代码质量。
|
定位技术 开发者
游戏开发者如何使用独享静态代理IP进行测试与优化
随着互联网技术的发展,使用代理IP的人数逐渐增加,特别是在业务需求中需要使用静态代理IP的情况越来越多。本文探讨了独享静态代理IP是否适用于游戏行业,分析了其优势如稳定性、不共享同一IP地址及地理位置选择等,同时也指出了需要注意的问题,包括可能的延迟、游戏兼容性和网络速度等。总体而言,选择合适的代理服务并正确配置,可以有效提升游戏体验。
218 2
|
9月前
|
缓存 JavaScript 中间件
如何测试中间件优化后的 Pinia 状态管理?
如何测试中间件优化后的 Pinia 状态管理?
258 64
|
9月前
|
数据可视化 JavaScript 前端开发
利用Postman和Apipost进行API测试的实践与优化-动态参数
在API测试中,Postman和Apipost是常用的工具。Postman内置变量功能有限,面对复杂场景时需编写JavaScript脚本,增加了维护成本。而Apipost提供丰富的内置变量、可视化动态值配置和低代码操作,支持生成真实随机数据,如邮箱、手机号等,显著提升测试效率和灵活性。对于复杂测试场景,Apipost是更好的选择,能有效降低开发与维护成本,提高测试工作的便捷性和可维护性。
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
MarS:微软开源金融市场模拟预测引擎,支持策略测试、风险管理和市场分析
MarS 是微软亚洲研究院推出的金融市场模拟预测引擎,基于生成型基础模型 LMM,支持无风险环境下的交易策略测试、风险管理和市场分析。
438 8
MarS:微软开源金融市场模拟预测引擎,支持策略测试、风险管理和市场分析
|
12月前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
180 11
|
12月前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
216 10
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
455 1

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多