基于阿里云容器服务监控 Kubernetes集群GPU指标

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: ### 简介 当您在阿里云容器服务中使用GPU ECS主机构建Kubernetes集群进行AI训练时,经常需要知道每个Pod使用的GPU的使用情况,比如每块显存使用情况、GPU利用率,GPU卡温度等监控信息,本文介绍如何快速在阿里云上构建基于Prometheus + Grafana的GPU监控方案。

简介

当您在阿里云容器服务中使用GPU ECS主机构建Kubernetes集群进行AI训练时,经常需要知道每个Pod使用的GPU的使用情况,比如每块显存使用情况、GPU利用率,GPU卡温度等监控信息,本文介绍如何快速在阿里云上构建基于Prometheus + Grafana的GPU监控方案。

Prometheus

Prometheus 是一个开源的服务监控系统和时间序列数据库。从 2012 年开始编写代码,再到 2015 年 github 上开源以来,已经吸引了 20k+ 关注,2016 年 Prometheus 成为继 k8s 后,第二名 CNCF(Cloud Native Computing Foundation) 成员。2018年8月 于CNCF毕业。
作为新一代开源解决方案,很多理念与 Google SRE 运维之道不谋而合。

image.png | left | 516x309

操作

前提

您已经通过阿里云容器服务创建了拥有GPU ECS的Kubernetes集群,并部署prometheus监控,具体步骤请参考:

部署Prometheus 的GPU 采集器

apiVersion: apps/v1
kind: DaemonSet
metadata:
  namespace: monitoring
  name: ack-prometheus-gpu-exporter
spec:
  selector:
    matchLabels:
      k8s-app: ack-prometheus-gpu-exporter
  template:
    metadata:
      labels:
        k8s-app: ack-prometheus-gpu-exporter
    spec:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: aliyun.accelerator/nvidia_name
                operator: Exists
      hostPID: true
      containers:
      - name: node-gpu-exporter
        image: registry.cn-hangzhou.aliyuncs.com/acs/gpu-prometheus-exporter:0.1-5cc5f27
        imagePullPolicy: Always
        ports:
        - name: http-metrics
          containerPort: 9445
        env:
          - name: MY_NODE_NAME
            valueFrom:
              fieldRef:
                apiVersion: v1
                fieldPath: spec.nodeName
        resources:
          requests:
            memory: 50Mi
            cpu: 200m
          limits:
            memory: 100Mi
            cpu: 300m
        volumeMounts:
        - mountPath: /var/run/docker.sock
          name: docker-sock
      volumes:
      - hostPath:
          path: /var/run/docker.sock
          type: File
        name: docker-sock
        
---
apiVersion: v1
kind: Service
metadata:
  name: node-gpu-exporter
  namespace: monitoring
  labels:
    k8s-app: ack-prometheus-gpu-exporter
spec:
  type: ClusterIP
  ports:
  - name: http-metrics
    port: 9445
    protocol: TCP
  selector:
    k8s-app: ack-prometheus-gpu-exporter

---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: ack-prometheus-gpu-exporter
  labels:
    release: ack-prometheus-operator
    app: ack-prometheus-gpu-exporter
  namespace: monitoring
spec:
  selector:
    matchLabels:
      k8s-app: ack-prometheus-gpu-exporter
  namespaceSelector:
    matchNames:
    - monitoring
  endpoints:
  - port: http-metrics
    interval: 30s

配置Grafana

访问Grafana监控面板

执行以下命令,将集群中的Grafana映射到本地3000端口。

kubectl -n monitoring port-forward svc/ack-prometheus-operator-grafana 3000:80

在浏览器中访问localhost:3000,即可访问Grafana。 默认账号密码为 admin/admin
image

导入GPU监控配置
  1. 下载文件并解压,得到两个json文件
  2. 进入Grafana页面,点击Import dashboard:

image

  1. 第一步下载的json文件上传,选择数据源为Prometheus

image

导入完成后查看结果确认监控正常。

查看监控信息

节点GPU监控

image.png | left | 827x422

Pod GPU监控

image.png | left | 827x423

部署应用

如果您已经使用了Arena,可以直接使用arena提交一个训练任务。

arena submit tf --name=style-transfer              \
              --gpus=1              \
              --workers=1              \
              --workerImage=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/neural-style:gpu \
              --workingDir=/neural-style \
              --ps=1              \
              --psImage=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/style-transfer:ps   \
              "python neural_style.py --styles /neural-style/examples/1-style.jpg --iterations 1000000"

NAME:   style-transfer
LAST DEPLOYED: Thu Sep 20 14:34:55 2018
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1alpha2/TFJob
NAME                  AGE
style-transfer-tfjob  0s

提交任务成功后在监控页面里可以看到Pod的GPU相关指标, 能够看到我们通过Arena部署的Pod,以及pod里GPU 的资源消耗

image.png | left | 827x422

节点维度也可以看到对应的GPU卡和节点的负载, 在GPU节点监控页面可以选择对应的节点和GPU卡

image.png | left | 827x421

相关实践学习
巧用云服务器ECS制作节日贺卡
本场景带您体验如何在一台CentOS 7操作系统的ECS实例上,通过搭建web服务器,上传源码到web容器,制作节日贺卡网页。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
6天前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
25天前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
11天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
3天前
|
监控 安全 Cloud Native
阿里云容器服务&云安全中心团队荣获信通院“云原生安全标杆案例”奖
2024年12月24日,阿里云容器服务团队与云安全中心团队获得中国信息通信研究院「云原生安全标杆案例」奖。
|
6天前
|
安全 虚拟化 异构计算
GPU安全容器面临的问题和挑战
本次分享由阿里云智能集团弹性计算高级技术专家李亮主讲,聚焦GPU安全容器面临的问题与挑战。内容分为五个部分:首先介绍GPU安全容器的背景及其优势;其次从安全、成本和性能三个维度探讨实践中遇到的问题及应对方案;最后分享GPU安全容器带状态迁移的技术路径与应用场景。在安全方面,重点解决GPU MMIO攻击问题;在成本上,优化虚拟化引入的内存开销;在性能上,提升P2P通信和GPU Direct的效率。带状态迁移则探讨了CRIU、Hibernate及VM迁移等技术的应用前景。
|
25天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
25天前
|
人工智能 运维 Kubernetes
拥抱智算时代:阿里云容器服务智能、托管、弹性新体验
本文总结了2024云栖大会容器计算专场的演讲内容,重点介绍了阿里云容器服务的新产品体验,包括智能、托管、弹性的特点,以及如何助力客户拥抱智算时代。文中还分享了多项实际案例和技术细节,展示了阿里云容器服务在提升用户体验和解决实际问题方面的努力。
|
26天前
|
供应链 安全 Cloud Native
阿里云容器服务助力企业构建云原生软件供应链安全
本文基于2024云栖大会演讲,探讨了软件供应链攻击的快速增长趋势及对企业安全的挑战。文中介绍了如何利用阿里云容器服务ACK、ACR和ASM构建云原生软件供应链安全,涵盖容器镜像的可信生产、管理和分发,以及服务网格ASM实现应用无感的零信任安全,确保企业在软件开发和部署过程中的安全性。
|
26天前
|
人工智能 Kubernetes Cloud Native
阿里云容器服务,智算时代云原生操作系统
2024云栖大会,阿里巴巴研究员易立分享了阿里云容器服务的最新进展。容器技术已成为云原生操作系统的基石,支持多样化的应用场景,如自动驾驶、AI训练等。阿里云容器服务覆盖公共云、边缘云、IDC,提供统一的基础设施,助力客户实现数字化转型和技术创新。今年,阿里云在弹性计算、网络优化、存储解决方案等方面进行了多项重要升级,进一步提升了性能和可靠性。
|
26天前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。

相关产品

  • 容器计算服务
  • 容器服务Kubernetes版