Gradient Descend 梯度下降法公式推导

简介: 通过求偏导的方式,求解多元函数,比较困难,可以用近似求解的方式,求解最大/最小值。即用迭代法求解x_{k+1}与前一个变量 x_k关系。

1

相关文章
|
7月前
|
算法
梯度下降算法(二)
梯度下降法中,学习率选择至关重要。0.3的学习率导致无法找到最小值且产生震荡,而0.01则使结果接近最优解(2.99998768)。当学习率进一步减小至0.001,点远离最低点。通过迭代次数增加至1000次,可更接近最低点(2.999999999256501)。梯度下降用于最小化损失,学习率控制参数更新步长,需平衡收敛速度和稳定性。迭代次数和初始点也影响模型性能,合适的初始化能加速收敛并避开局部极小值。
|
7月前
|
机器学习/深度学习 存储 算法
梯度下降算法(一)
梯度下降是一种迭代优化算法,用于找到多变量函数的最小值。它不直接求解方程,而是从随机初始点开始,沿着梯度(函数增大幅度最大方向)的反方向逐步调整参数,逐步逼近函数的最小值。在单变量函数中,梯度是导数,而在多变量函数中,梯度是一个包含所有变量偏导数的向量。通过计算梯度并乘以学习率,算法更新参数以接近最小值。代码示例展示了如何用Python实现梯度下降,通过不断迭代直到梯度足够小或达到预设的最大迭代次数。该过程可以类比为在雾中下山,通过感知坡度变化来调整前进方向。
|
算法 定位技术
最优化方法(最速下降、牛顿法、高斯牛顿法、LM算法)
最优化方法(最速下降、牛顿法、高斯牛顿法、LM算法)
709 0
最优化方法(最速下降、牛顿法、高斯牛顿法、LM算法)
|
8月前
|
算法 Python
梯度下降法
梯度下降法
85 0
|
机器学习/深度学习 并行计算 算法
梯度下降(Gradient Descent)
梯度下降(Gradient Descent)是一种常用的优化算法,用于最小化(或最大化)函数的目标值。它是一种迭代的优化方法,通过沿着目标函数的负梯度方向更新参数,逐步接近最优解。
154 1
|
机器学习/深度学习 移动开发
梯度下降法 Gradient Descent
梯度下降法 Gradient Descent
|
机器学习/深度学习 算法 Python
机器学习算法之——梯度提升(Gradient Boosting)上
由于每个子模型要使用全部的数据集进行训练,因此 Ada Boosting 算法中没有 oob 数据集,在使用 Ada Boosting 算法前,需要划分数据集:train_test_split;
机器学习算法之——梯度提升(Gradient Boosting)上
|
机器学习/深度学习 算法
机器学习算法之——梯度提升(Gradient Boosting)下
GDBT本身并不复杂,不过要吃透的话需要对集成学习的原理、策树原理和各种损失函树有一定的了解。由于GBDT的卓越性能,只要是研究机器学习都应该掌握这个算法,包括背后的原理和应用调参方法。目前GBDT的算法比较好的库是xgboost。当然scikit-learn也可以。
机器学习算法之——梯度提升(Gradient Boosting)下
|
机器学习/深度学习 算法
梯度下降算法原理 神经网络(Gradient Descent)
梯度下降算法原理 神经网络(Gradient Descent)
222 0
梯度下降算法原理 神经网络(Gradient Descent)
|
机器学习/深度学习 算法
集成学习-Blending算法
集成学习(又称模型融合)就是结合若干个体分类器(基学习器)进行综合预测,各个个体学习器通常是弱学习器。集成学习相较于个体学习在预测准确率以及稳定性上都有很大的提高。
312 0
集成学习-Blending算法